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Goal

Detect and classify lesions in breast ultrasound 
imaging in an explainable way.
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Clinical Explainability
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We can predict existing, clinically-relevant 
reporting guidelines as concepts.
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Concept Bottleneck Models1

Irregular

Indistinct

Parallel

No feat.

Heterogen.

Neural network

(Mask R-CNN)
Malignant

CBMs align intermediate model representations 
with these human-defined concepts.

1. P. W. Koh et al., "Concept Bottleneck Models," 2020.



Steering with Concepts 
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CBMs allow for steerable, physician-in-the-loop 
AI to be used in the clinic.



Clinical Concepts for 
Breast US Attribute Categories

Shape

Oval

Round

Irregular

Orientation
Parallel
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Margin
Circumscribed

Not circumscribed 

Echo Pattern 

Anechoic

Hyperechoic

Complex cystic and solid

Hypoechoic

Isoechoic

Heterogeneous

Posterior 

Features

No posterior features

Enhancement

Shadowing

Combined pattern

Concepts defined with lexicon 
of Breast Imaging-Reporting 
and Data System Masses 

(BI-RADS)

Indicative of malignancy

Indicative of benignity

C. D’Orsi, L. Bassett, and S. Feig, "Breast imaging reporting 

and data system (BI-RADS)," Breast imaging Atlas, 4th edn. 

American College of Radiology, Reston, 2018.
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Stage 1: Lesion detection 
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Mask R-CNN2
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2. K. He, G. Gkioxari, P. Dollár, and R. Girshick, 

"Mask R-CNN," p. arXiv:1703.06870. [Online]. 



Stage 2: Concept classification
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Stage 3: Cancer classification
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Breast US Dataset

● Data from Hawaiʻi and Pacific Islands 
Mammography Registry3

● 994 women with 8,854 images 

● Matched by birth year and ultrasound 
machine type 

● Split 70% train, 10% valid, 20% test

3. Hawaiʻi and Pacific Islands Mammography Registry 

https://hipimr.shepherdresearchlab.org/

https://hipimr.shepherdresearchlab.org/


Experiment 1: Post-bottleneck 
design
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Experiment 2: Concept steering
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Performance in lesion detection

Model
Average Precision Average Precision75

Segm BBox Segm BBox

BI-RADS CBM 0.49 0.47 0.55 0.53

STNet (Qin et. al 2023) N/A 0.40 N/A 0.43

CVA-Net (Lin et. al 2022) N/A 0.36 N/A 0.39

CBM = Concept Bottleneck Model 

C. Qin, J. Cao, H. Fu, R. M. Anwer, and F. S. Khan, "A Spatial-Temporal Deformable Attention Based Framework for Breast Lesion Detection in Videos," in 

International Conference on Medical Image Computing and Computer-Assisted Intervention, 2023: Springer, pp. 479-488. 

Z. Lin, J. Lin, L. Zhu, H. Fu, J. Qin, and L. Wang, "A New Dataset and a Baseline Model for Breast Lesion Detection in Ultrasound Videos," in International 

Conference on Medical Image Computing and Computer-Assisted Intervention, 2022: Springer, pp. 614-623. 



Concept bottleneck does not degrade 
performance and aids interpretability. 

Model
Side

channel?
Nonlinear? AUROC @ IoU = 0.75

Baseline N/A N/A 0.88 (0.85, 0.91)

BI-RADS CBM No No 0.86 (0.82, 0.90)

BI-RADS CBM No Yes 0.86 (0.83, 0.90)

BI-RADS CBM Yes Yes 0.87 (0.84, 0.91)

CBM = Concept Bottleneck Model 



Experiment 2: We can intervene on 
concepts and improve model performance. 
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Experiment 1: The effect of the intervention 
differs based on model complexity. 
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Questions?

18
This study was funded in part by the NCI (5R01CA263491)

BI-RADS CBM presents an 

explainable AI solution for lesion 

detection, description, and 

classification from breast US.

https://github.com/hawaii-ai/bus-cbm

https://github.com/hawaii-ai/bus-cbm
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