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Methods

Overall Train Validation Test

Women, N 994 693 101 200

Women with benign findings, N 745 520 75 150

Women with malignant findings, N 249 173 26 50

Mean no. of images/woman 8.91 9.03 9.01 8.42

Images, N 8,854 6,260 910 1,684

Images with benign findings, N 6,555 4,587 661 1,307

Images with malignant findings, N 2,299 1,673 249 377

Mean no. of lesion views/image 1.24 1.26 1.21 1.17

Lesion views, N 5,648 4,203 573 872

Lesion views w/benign findings, N 3,579 2,626 369 584

Lesion views w/malignant findings, N 2,069 1,577 204 288
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Figure 1: An overview of BI-RADS CBM, including the Mask-RCNN underlying 
structure and the BI-RADS concept bottleneck sub-network. A. highlights the side 
channel, trained for cancer classification only. B. highlights concept-level 
corrections which can be made by the expert reader in the clinic. 

A.

B.

• AI-enabled breast ultrasound (BUS) has the potential to speed up reading 
and improve workflow for resource-limited scenarios. 

• Explainable AI (XAI) can improve radiologist acceptance of AI-enabled 
BUS by providing verification and explanation of lesion malignancy 
decisions, acting as a second reader for BUS exams. 

• Concept bottleneck models (CBM) [1] seek to align intermediate model 
representations with human-defined concepts such that the activation of a 
particular node in the bottleneck layer indicates concept activation. 

• The BI-RADS masses lexicon for BUS is defined by the American College of 
Radiology [2] to standardize reporting of BUS lesions. The BI-RADS masses 
lexicon contains 5 properties to describe lesions in BUS: shape, 
orientation, margin, echo pattern, and posterior features. 

• Our overall hypothesis is that CBMs which contain clinically-relevant 
concepts (BI-RADS masses lexicon) can perform with state-of-the-art 
accuracy in lesion detection from BUS while allowing radiologist 
intervention for steerable XAI decisions. 

Table 1: Image-, patient-, and lesion-level counts for all data splits from the HIPIMR.

Side 

channel?
Linear? Correction? AUROC0.75

X ✓ None 0.861

X ✓ Minimal 0.885

X ✓ Maximal 0.841

X X None 0.862

X X Minimal 0.874

X X Maximal 0.814

✓ X None 0.871

✓ X Minimal 0.872

✓ X Maximal 0.845

N/A N/A N/A 0.876

• We propose to integrate a CBM [1] into a Mask RCNN [3] with a ResNet-101 
backbone [4, 5], creating BI-RADS CBM (see Figure 1). Models are 
implemented in PyTorch [6] using the Detectron2 [7] library.

• BI-RADS CBM 1) detects a lesion in a BUS image; 2) predicts the BI-RADS 
masses lexicon; and 3) uses the BI-RADS masses lexicon to predict 
whether the lesion is cancerous. 

• BUS images were collected from the Hawaiʻi and Pacific Islands 
Mammography Registry (HIPIMR) and cleaned using an automatic 
preprocessing pipeline [8]. 

• Data were randomly split into training (70%), validation (10%), and testing 
(20%) by case-control group (Table 1). Cases were matched to controls on 
BUS machine type and birth year.

• To minimize concept leakage, we train BI-RADS CBM in 3 stages. In Stage 
1, the detection backbone network is fine-tuned to detect lesions only. In 
Stage 2, a classification head is trained to predict the BI-RADS masses 
lexicon concepts. In Stage 3, the final part of the model is trained to predict 
cancer from the BI-RADS masses lexicon concepts. 

• The BI-RADS CBM detection 
backbone detected lesions 
with AP 0.469 for box-style 
detections on the testing set.

• BI-RADS CBM classifies the 
masses lexicon with AUROC 
0.616, 0.921, 0.901, 0.842, 
and 0.916 for posterior 
features, echo pattern, 
shape, orientation, and 
margin, respectively at 
IOU=0.75. 

• The best performing model 
without accounting for  
concept correction was the 
non-linear model with a side 
channel. See Table 2. 

• When allowing for concept 
correction for incorrectly 
predicted concepts, the best 
performing model is the 
linear model with no side 
channel. See Table 2. 

Table 2: Performance characteristics for the 
cancer classification task, with and without 
concept correction on the testing set. Gray 
represents the baseline model.
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Conclusion

• We experiment with cancer head complexity by varying concept 
combination strategy (linear vs. non-linear) and model interpretability 
(clinical concepts only vs. with additional side channel). 

• For ease of intermediate representation in BI-RADS CBM, we binarize the 
BI-RADS masses lexicon for each property into those classifications which 
are either indicative of malignancy or indicative of benignity. 

• In experiments on steering with corrected concepts in BI-RADS CBM, 
concepts are corrected just until the correct class is predicted with either 
probability 0.51 (minimal) or 0.99 (maximal)

• BI-RADS masses lexicon concept intervention is possible on BUS imaging 
and increases cancer classification performance. 

• The complexity of the cancer head and the non-explainable side channel 
both improved performance when intervention was not permitted. 
However, the linear cancer head retained the best performance when 
concepts were corrected at test time. 

• CBMs which contain clinically-relevant concepts can perform with state-
of-the-art accuracy in lesion detection from BUS

Read the 
paper!

HIPIMR 
website

Side 
channel

https://github.com/facebookresearch/detectron2
https://hipimr.shepherdresearchlab.org/

	Slide 1

