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(@ Obiective

Investigate imaging features associated with risk of
advanced breast cancer

e Motivation
o Advanced cancer is associated with poorer survival
o Hawai'i has a high rate of advanced-stage breast cancer
o Risk models for advanced breast cancer are limited and
do not include imaging information.

e Hypothesis - Al can fully interrogate images for any
signals of advanced cancer risk



@ SEER Staging
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@ Stage vs. Survival

Cancer diagnosed at later stages has significantly lower

percent survival
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SEER*Explorer: An interactive website for SEER cancer statistics [Internet]. Surveillance Research Program, National
Cancer Institute; 2023 Apr 19. [cited 2023 Jun 4]. Available from: https://seer.cancer.gov/statistics-network/explorer/.
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High Rate of Advanced-Stage Cancer In
the Pacific
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Advanced Stage

« RIisk factors with strong
associations to advanced
cancer:

* Disease with atypia
* Dense breasts
* Obesity

Kerlikowske K et al. Cumulative Advanced Breast Cancer Risk Prediction
Model Developed in a Screening Mammography Population. JNCI : Journal
of the National Cancer Institute. 2022;114(5):676-85.

Associations of Standard Risk Factors to

Advanced prognostic stage [1+'

. Annual Biennial

Risk factors i
Premenopausal  Postmenopausal  Premenopausal  Postmenopausal
OR(95% CI)  OR (95% CI) OR (95% CI) OR (95% CI)

Age (in years) — linear term 098 (091, 1.06) 1.03(1.00, 1.05) 1.01(093, 1.11) 1.05(1.02, 1.08)

Age (in years), quadratic term 0.99 (099, 1.00) 1L.00(1.00, 1.00) 1.00(0.99, 1.00) 1.00(1.00, 1.00)

Race and ethnicity

Astan//Pacific Islander 0.79(051, 1.24) 0.82(060, 1.10) 0.66 (041, 1.09) 1.03(0.79, 1.35)

Black, non-Hispanic
Hispanic
White, non-Hispanic
Other/Mixed
degree family history of breast
cancer”
Yes
No
History of breast biopsy

I.‘l

No prior biopsy

Prior biopsy, benign diagnosis

unknown

Non-proliferative

Proliferative without atypia

Proliferative with atypia
BI-RADS breast density

Almost entirely fat

Scattered fibroglandular

densities

#Helerogeneously dense
Extremely dense

Body mass index, kg}m2
Underweight (<18.5)
Normal (18.5-24.9)
Overweight (25.0-29.9)

Obese, grade I (30.0-34.9)
QObﬁs&, grade IV11 (235.0)

1.65 (1.16, 2.36)
0.75 (041, 1.39)

ref
1.39 (065, 2.97)

1.61(121,2.13)
ref

ref
1.73 (125, 2.40)

1.36 (085, 2.17)
108 (048, 2.43)
2.43 (060, 9.82)

0.41 (015, 1.14)

ref
2.29 (164, 3.20)
264 (1.71, 4.06)

0.64 (0.19, 2.10)
ref

1.31 (093, 1.85)

1.38 (0.88, 2.18)

1.83 (1.17, 2.86)

1.94 (161, 2.35)
1.33 (095, 1.87)

ref
1.28 (076, 2.14)

1.37 (116, 1.60)
ref

ref
1.58 (134, 1.87)

1.64(127,2.11)
1.65(1.10, 2.47)
2.18(1.03, 4.60)

0.44 (031, 0.62)

ref
1.82(155,2.13)
2.41(1.78, 3.25)

1.32(0.74, 2.36)
ref
1.42(1.14, 1.76)
1.72(135,2.20)

] 2.30(1.80, 2.95)

L17(0.75, 1.82)
0.98 (0.59, 1.63)

ref
0.87(0.36, 2.11)

1.44 (1.00, 2.07)
ref

ref
1.79(1.23, 2.61)

1.30 (066, 2.54)
1.34 (043, 4.19)
0.00 (0.00, Inf)

0.40(0.13, 1.25)

ref
1.85(1.27, 2.69)
2.44(1.49, 3.99)

0.79(0.25, 2.49)
ref
1.72(1.19, 2.49)
1.54(0.97,2.42)

] 1.40(0.79, 2.48)

1.53(1.17, 1.99)
0.84 (0.55, 1.28)

ref
1.11(0.65, 1.91)

1.20(0.95, 1.51)
ref

ref
1.60(1.29, 1.97)

1.24(0.79, 1.95)
1.24(0.57, 2.67)
2.37(0.59, 9.52)

0.38(0.24, 0.59)
ref

1.61(1.32, 1.97)
2.11(1.45, 3.06)

1.20(0.61, 2.38)
ref

2.07 (158, 2.71)

1.85(1.30, 2.65)
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Assessed for
Dat a Eligibility

Excluded
Missing MLO/CC view for L and R breast
Has a prior tumor record

The data used in this Study are Mammogram not acquired on Hologic System
Unknown diagnosis or outcome

sourced from the Hawai‘i and
Pacific Islands Mammography )
Registry (HIPIMR) Fosessed ad

cases/controls

Inclusion
o In the registry before 8/31/22 Excluded (Cases)
o All 4 standard mammographic il B sEkli Excluded (Controls)

_ _ Diagnosis date >2 years * Imaging is BI-RADS 2 or
VIEWS Or Images from ipsilateral above
o Known staging, diagnosis, and A Missing L/R
Missing contralateral mammogram <1 year
outcome mammogram taken <1 from R/L

year from ipsilateral.

Allocated as cases Allocated as controls



@ Data Demographics

e Data exported as of

Clinical & Al-Derived Breast Densit
08/31/22 o
O 240,000 ImageS 12,000 = Clinical
o 26,000 women 10,000
O 195 diagnosed with < 5000
advanced-stage breast 2 oo
cancer 2 4000
2,000
., =mill m
o Al'derlved |abe|s are ’ BI-RADSBBreastDensityCCategory ’

sourced from NYU
breast density algorithm

Wu N. et. Al Breast Density Classification with Deep Convolutional Neural Networks. 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2018 2018-04-
01: IEEE. 11



@ Image-based Modeling Approach

Left View

e Imaging/deep radiomic

feature extractor

o Base architecture
m DenseNetl2l
m Pretrained ImageNet
m Weights locked

e Logistic models take in both

L and R views

Right View

DenseNet121
w/ ImageNet
Weights

= T

Deep Radiomic l Deep Radiomic

Feature Vector (Left) Feature Vector (Right)

Logistic Model

v

Advanced / Not Advanced
Cancer Prediction
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@ LogiStiC I\/IOdeIS Left View Right View

We built 5 logistic models

1. Clinical density only model
2. Al-derived density only model
3. Image feature only model
4. Combined clinical density and DenseNet121
Image features _ w/ ImageNet
5. Combined dl density and image Weights
features
/\
Density| Age EE T EE
A” mOdeIS Wthh |nCIUde denSIty l Deep Radiomic Feature Vector (Left +Right)
were age adjusted |
Logistic Models
1&2

Logistic Model 3

A 4

Logistic Models
48&5
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@ Logistic Model Performance

e Image features I
perform better than | et oy
density only models ___ Deep Radiomics
: AUC=0.63
e Combined models .. ' DL Density
2 ~ AUC=0.56
perform_ed best _ £ Clinical Density +
o Imaging contains " —— Deep gangiomics
signals of risk o Density +
unique to density | £/~ —— Deep Radiomics
AUC=0.67

0?4 0:6
1 - Specificity
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@ Conclusion

e Imaging contains predictive information related to risk

of advanced cancer
o Information is unique to breast density

e Such models can be used to identify high risk women
and intervene appropriately

Caveats:

e Not all common risk factors were available

e Small number of cancers with category D density
o S0 we combined C and D when computing odds ratios

e Small number of advanced cancer cases
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