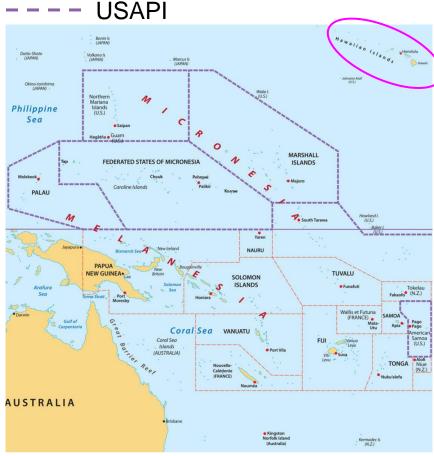
Early Breast Cancer Diagnosis via Breast Ultrasound and Deep Learning

M.S. Thesis Defense Arianna Bunnell

Motivation

- Advanced stage breast cancer rates in the Pacific are higher than in the USA mainland, especially where mammography is inaccessible
 - Palau: 77% of breast cancer cases are diagnosed at an advanced stage
 - Republic of the Marshall Islands: 72%
 - Federated States of Micronesia: 82%
- Ultrasound is a viable alternative imaging modality
 - Requires: sonographer and interpreting radiologist
 - Can Al soften the requirements?
- Portable, handheld, Al-enabled breast ultrasound (BUS) devices operated by a local healthcare worker could greatly reduce advanced stage cancer rates
 - Finding breast cancer
 - Evaluating breast cancer risk



Problem Statement

1. Lesion Detection

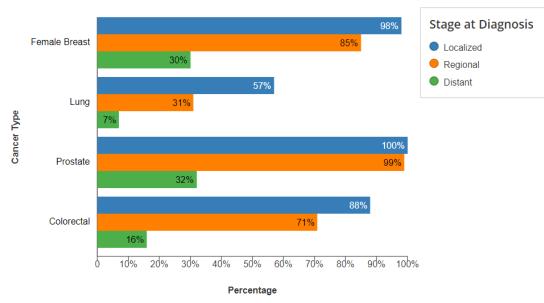
- a. Locate breast lesions
- b. Evaluate cancer status
- c. (Compute descriptive features)
- d. Perform biopsy

2. Breast Density Classification

- a. Classify breast density
- b. Perform risk evaluation

Catch breast cancer earlier, when there's a higher chance of survival

5-year relative survival estimates the percentage of cancer patients who will have not died from their cancer 5 years after diagnosis.



https://www.cdc.gov/cancer/uscs/about/data-briefs/no25-incidence-relative-survival-stage-diagnosis.htm

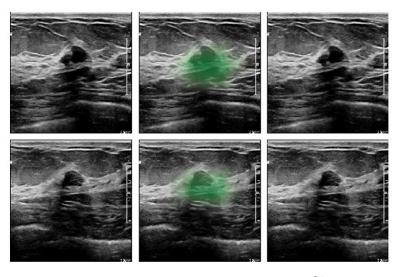
Identify women who would benefit from additional screening and/or interventions

Lesion Detection

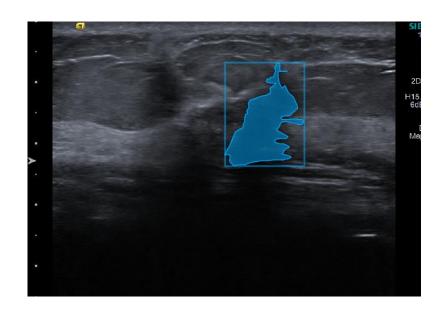
Goal: Localize and classify the cancer status of 0 or more breast lesion(s) per patient

- Location information is essential for breast biopsy procedural planning
- Radiologists use irregularities in tissue structure to recognize breast lesions

Lesion detection is an object detection problem



Shen+202'



Lesion Detection

BI-RADS US Masses Lexicon

Goal: Provide justification for breast lesion classification

- Certain characteristics in the Masses lexicon are more indicative of malignancy than others
- Radiologists refer to the Masses lexicon to describe lesions

Assignment to the BI-RADS US Masses Lexicon is multiple classification problems

ACR BI-RADS Atlas Fifth Edition

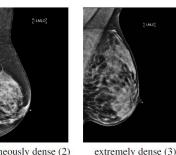
Lesion Attribute	Categories	
Shape	Oval	
	Round	
	Irregular	
Orientation	Parallel	
Officiation	Not parallel	
	Circumscribed	
Margin	Not circumscribed	
	 Indistinct 	
	Angular	
	 Microlobulated 	
	Spiculated	
	Anechoic	
	Hyperechoic	
Echo Pattern	Complex cystic and solid	
	Hypoechoic	
	Isoechoic	
	Heterogeneous	
Posterior Features	No posterior features	
	Enhancement	
	Shadowing	
	Combined pattern	

Breast Density

Goal: Identify the mammographic breast density of a patient

- It is well-established that higher mammographic breast density is associated with higher risk of breast cancer
- The paradigm of getting a measure defined on mammography from BUS seems only applicable in settings without mammography

Breast density identification can be a classification problem



almost entirely fatty (0) fibroglandular density (1)

scattered areas of heterogeneously dense (2) proglandular density (1)

Wu+2018

BI-RADS Category	Fibroglandular Tissue	Description
A	0-25%	The breasts are almost entirely fatty
В	25-50%	There are scattered areas of fibroglandular density
С	50-75%	The breasts are heterogeneously dense, which may obscure small masses
D	75-100%	The breasts are extremely dense, which lowers the sensitivity of mammography

Data Sources

- The data used in this study are sourced from the Hawaii and Pacific Islands Mammography Registry (HIPIMR)
 - Prospective cohort of women
 - Collects breast imaging and breast health information (2009-present)
 - Linked to the Hawai'i Tumor Registry to identify cases
- HIPIMR data consist of imaging, metadata, clinical variables, patient characteristics, and biopsy-confirmed cancer status

Data Description

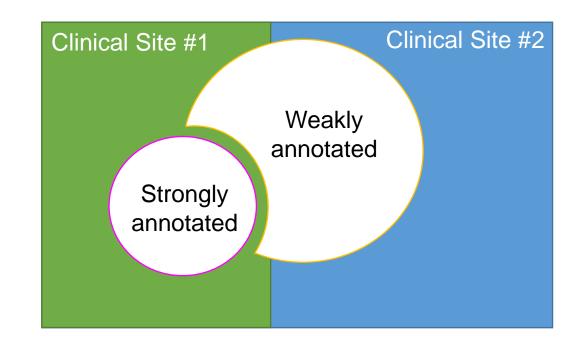
Lesion Detection

Weakly annotated

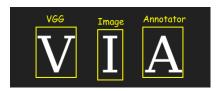
- Includes biopsy-confirmed cancer label
- Pulled October 2022 (two clinical partners)
- Split 70%-30% by case-control set

Strongly annotated

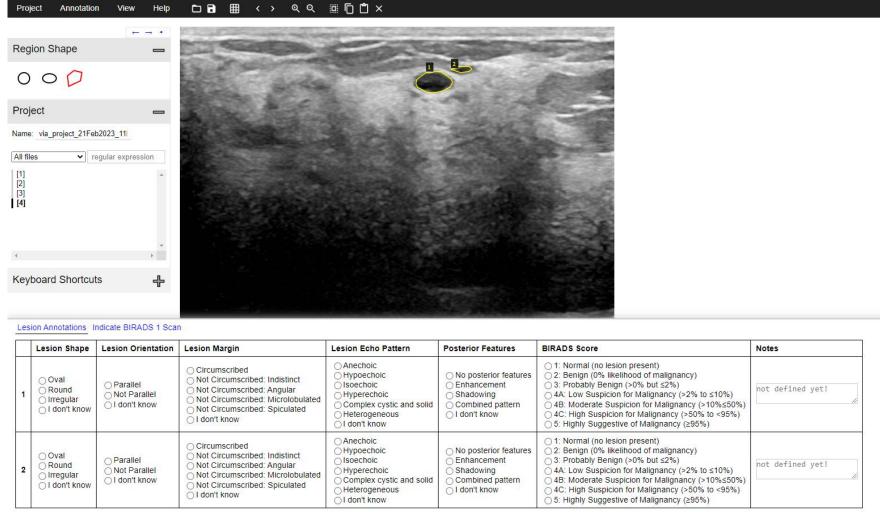
- Also includes lesion location and BI-RADS Masses characteristics
- Sourced from collaborating radiologist
- Pulled August 2021 (one clinical partner)
- Split 70%-20%-10% by case-control set



Radiologist Annotation Tool



Lesion Detection



Data

Lesion Detection

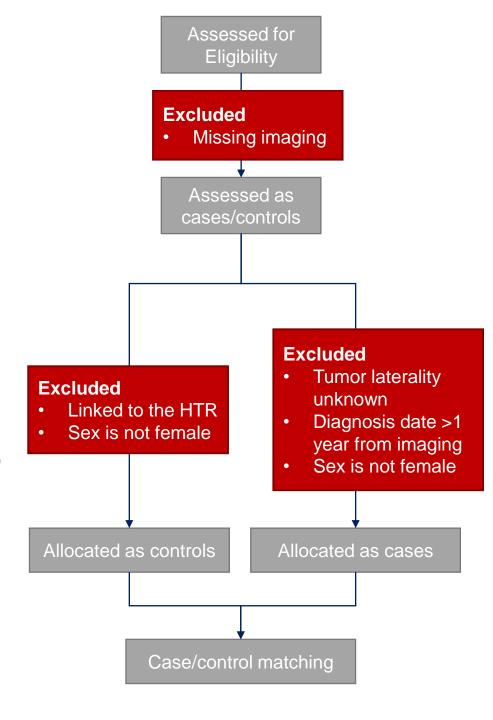
- Population is all patients with a record of BUS imaging in the HIPIMR
- Exclusion Criteria
 - Diagnosis date >1 year from imaging
 - US imaging of contralateral breast only
 - Missing imaging

Strongly annotated

• 1:3 case-control matching on birth year (n = 444)

Weakly annotated

• 1:3 case-control matching on birth year and BUS machine type (n = 2,004)

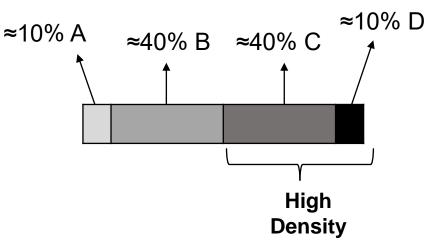


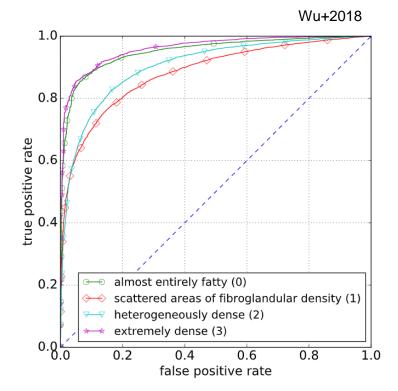
Data Description

Breast Density Classification

- Includes clinical and Al-derived breast density labels
 - Clinical labels are assigned based on visual assessment by the radiologist
 - Al-derived labels are sourced from NYU breast density algorithm
- Split 60%-20%-20% by case-control set, stratified by Al-derived density

Al-derived
$$y = [p(y = A|x) \quad p(y = B|x) \quad p(y = C|x) \quad p(y = D|x)]$$
 Clinical $y \in \{A, B, C, D\}$





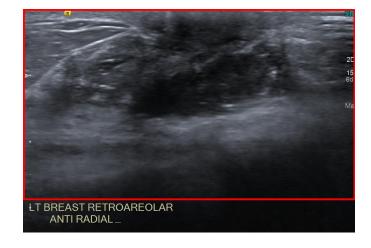
Data Description

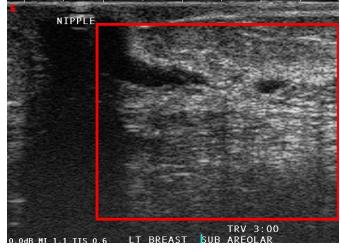
Breast Density Classification

Splits

- Training Set (60%)
- Validation Set (20%)
 - Dirty validation set
 - Clean validation set
- Clean testing set (20%)
- Clean dataset: no lesion markers and text annotations cropped out

We found no evidence of substantial performance differences between the clean and dirty validation sets

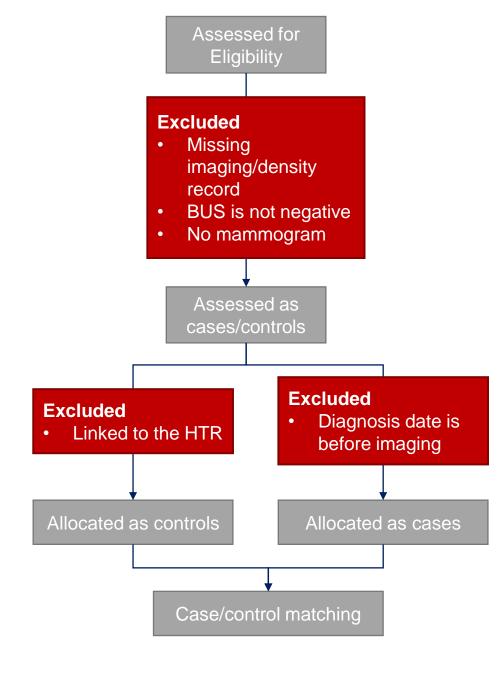




Data

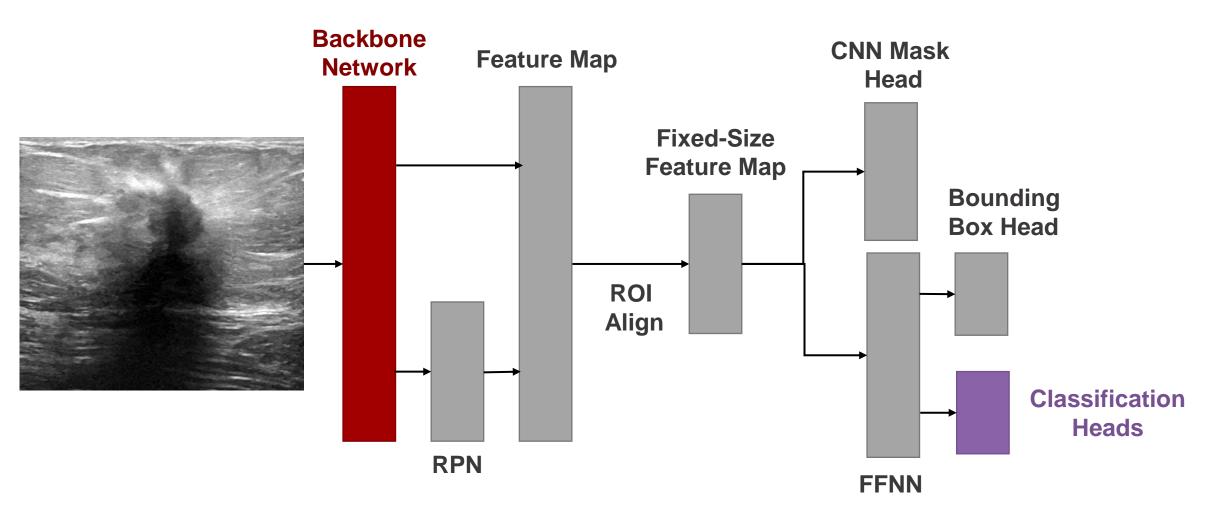
Breast Density Classification

- Population is all patients with a record of BUS imaging in the HIPIMR
- Exclusion Criteria
 - No mammogram <1 year from BUS imaging
 - Missing density record <1 year from imaging
 - BUS is not negative (BI-RADS 1 or 2)
 - Diagnosis date is before imaging date
 - Missing imaging
- 1:10 case-control matching on birth year and BUS machine type (n = 4,202)



Mask R-CNN

Lesion Detection

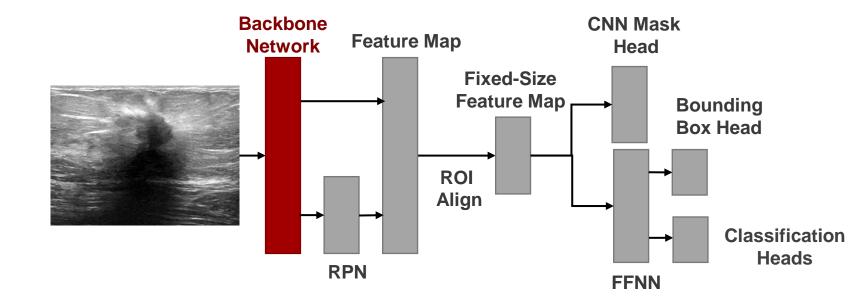


Mask R-CNN

Lesion Detection

Multi-stage transfer learning

- 1. Train backbone network (ResNet-101) on ImageNet
- 2. Train backbone network on weakly-annotated dataset
- 3. Train full network on strongly-annotated dataset

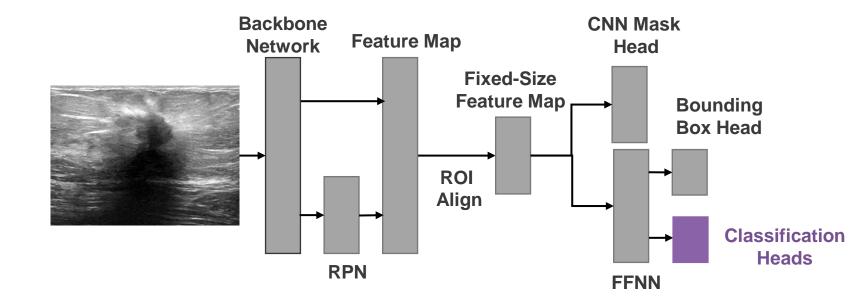


Mask R-CNN

Lesion Detection

Multi-branch classification head

- 6 different classification head sub-networks
 - 5 independent BI-RADS Masses characteristics
 - Benign/malignant classification



Lesion Detection Results

Evaluation Metrics

- Evaluated using average precision at intersection over union 0.5. (AP@50)
- AP@50 is the area under the precision recall curve when we classify our detections with IoU threshold $\alpha = 0.5$
- Compute the AUPRC for each sub-categorization separately, then take the mean to come to our final AP value

True Positive

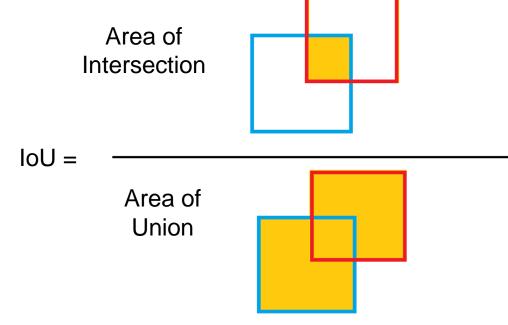
IoU ≥ α and class label correct

False Positive

- IoU < α
- Class label incorrect

False Negative

Missed object



Lesion Detection Results

True Positive

• IoU ≥ α and class label correct

False Positive

- IoU < α
- Class label incorrect

False Negative

Missed object

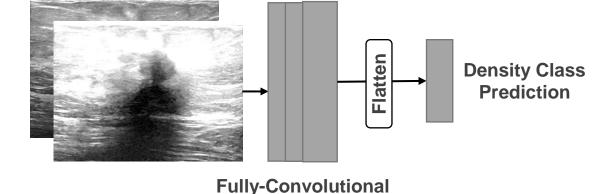
Target	Bounding Box	Segmentation	
	AP@50	AP@50	
Cancer	38.5	39.2	
Shape	13.3	14.2	
Orientation	17.6	18.2	
Margin	7.9	8.4	
Echo Pattern	11.6	12.2	
Posterior Features	11.3	11.8	

Models

Breast Density Classification

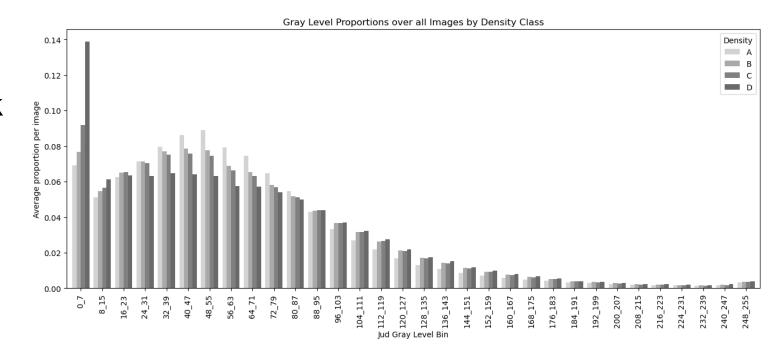
Jud et al. gray-level features

- 32 evenly-spaced gray-level bins
 - Logistic Regression
 - MLP



Network

Fully-convolutional network



Breast Density Classification Results

- Evaluated using one vs. rest AUROC
- The CNN's output four-tuples were condensed into a single value,
 representing the class for which they predicted the largest probability

One vs. Rest AUROC (95% C.I.)

	Model			
Density Category	LogReg	MLP	CNN	
Α	0.53 (0.50, 0.57)	0.54 (0.50, 0.57)	0.71 (0.68, 0.74)	
В	0.59 (0.58, 0.59)	0.64 (0.63, 0.64)	0.66 (0.65, 0.67)	
С	0.57 (0.56, 0.57)	0.62 (0.61, 0.63)	0.65 (0.64, 0.65)	
D	0.70 (0.68, 0.72)	0.74 (0.71, 0.76)	0.75 (0.73, 0.77)	

Future Work

Lesion Detection

- Allow cross-talk between BI-RADS Masses characteristic subnetworks
- Implement more explicit XAI methods
- Class-aware mask prediction

Breast Density Classification

Multiple-instance learning