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ABSTRACT 

Low- and middle-income countries, such as the U.S.-Affiliated Pacific islands, suffer from much higher 

advanced stage breast cancer (Stages III and IV) rates than high-income countries, especially where 

mammography services do not exist or have low accessibility. Examples include Palau (77% of breast 

cancer cases diagnosed at an advanced stage), American Samoa (72%), and the Federated States of 

Micronesia (82%). Portable, handheld, AI-enabled breast ultrasound devices operated by a local 

healthcare worker could greatly reduce advanced stage cancer rates in the U.S.-Affiliated Pacific Islands 

by making screenings drastically more accessible. In this work, we have explored AI models for both 

breast lesion detection and breast density estimation from clinical breast ultrasound. Breast density 

assessment and lesion detection and diagnosis were trained and evaluated on task-specific datasets 

collected from clinical breast imaging centers across Hawaiʻi, available through the Hawaiʻi Pacific 

Island Mammography Registry.  

The results of the breast lesion detection task show that diagnosis of breast lesions is possible on 

ultrasound with concurrent classification of lesion descriptors for explainability, achieving 0.39 average 

precision. Precise delineation and classification of breast lesions is possible with AI applied to breast 

ultrasound. We expect performance to increase as more data become available. The typical performance 

across the breast lesion detection literature for non-explainable methods is 0.7 mean average precision. 

The breast density model is the first application of deep learning to predicting the BI-RADS 

mammographic breast density category from clinical breast ultrasound (inter-modality) and achieves 0.69 

mean one-vs.-rest AUROC on a held-out test set. There is signal detectable by AI which relates 

mammographic breast density to breast ultrasound images. Methods for intra-modality classification of 

mammographic breast density with deep learning achieve approximately 0.93 mean one vs. rest AUROC 

on an internal test set. 
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1  INTRODUCTION 

Advanced stage breast cancer (Stages III and IV) rates are higher in low- and middle-income countries 

(LMICs) than in high-income countries. In LMICs, advanced stage breast cancer represents 60-80% of 

new breast cancer cases as compared to 25-40% of new breast cancer cases in the United States [3-5]. We 

take the U.S.-Affiliated Pacific Islands (USAPI) as a particular example. Examples of elevated advanced 

stage breast cancer rates in the USAPI include Palau (77% advanced stage breast cancer rate), American 

Samoa (72%), and the Federated States of Micronesia (82%) [6]. Excepting Guam and the 

Commonwealth of the Northern Marianas Islands, all territories included in the USAPI are classified as 

LMICs by the World Bank [7]. Advanced stage breast cancer has higher mortality than cancer discovered 

in the earlier stages. The CDC reports a 31% 5-year relative survival rate for breast cancer diagnosed at 

the distant stage (Stage IV), as compared to 85% and 98% for breast cancer in the regional and localized 

stages (Stages I-III), respectively [8]. Discovering breast cancer at earlier stages leads to higher survival 

for patients.  

The USAPI (and more generally, geographically remote LMICs) suffer from low or nonexistent 

access to mammography, lack of radiologists and radiology technicians, and an undue burden of travel 

between neighboring islands. Population-level breast cancer screening is functionally nonexistent 

throughout the USAPI. An effective breast cancer screening paradigm for the USAPI would address the 

lack of mammography, burden of travel, and personnel shortage. Reducing advanced stage breast cancer 

rates involves implementing early diagnosis outreach efforts to catch breast cancer earlier, when there is a 

higher chance of survival and cancer is more responsive to treatment.  

 Portable breast ultrasound (BUS) is a breast cancer screening and diagnosis technology well-

suited to addressing barriers to care in LMICs. Portable BUS systems allow for breast imaging to be 

brought directly to the patient, removing the need for patients to travel great distances to receive imaging. 

BUS is a viable replacement for mammography, maintaining a sensitivity and specificity (95% 

confidence interval) of 75% (64% to 83%) and 87% (74% to 94%) in breast cancer detection, respectively 

compared to 56% (45% to 66%) and 94% (86% to 98%) for mammography [9]. Artificial intelligence 

(AI) for BUS is a developing research area; some algorithms have shown radiologist-level performance 

[10-12]. AI in BUS can ameliorate constraints on radiologists by providing breast cancer diagnoses from 

imaging directly, as well as addressing the inflated false-positive rate of BUS for breast cancer detection 

[10]. 
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In this work, we developed proof-of-concept AI algorithms for both breast lesion 

detection/description and breast density estimation on clinical BUS. Our overall hypothesis is that 

introducing portable handheld ultrasound systems coupled with similar algorithms and operated by a 

trained healthcare worker will reduce advanced stage cancer rates in low-resource areas where 

mammography is not available. For this to be true, the proposed early diagnosis approach will have to 

have a similar sensitivity and specificity for breast cancer detection as mammography read by a 

radiologist. 
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2  BACKGROUND 

2.1  Breast Cancer Screening in Low-Resource Environments 

Breast cancer screening in low-resource environments, such as in low- and middle-income countries (i.e., 

the US-Affiliated Pacific Islands) presents unique challenges to the conventional approach to screening in 

higher-resource environments. Lack of health literacy, geographical barriers, cancer stigma, lack of 

healthcare infrastructure, and cost of examination have all been cited as possible reasons why screening is 

not highly utilized in resource-constrained settings [13]. Despite mammography being the standard of 

care for breast cancer screening and early diagnosis in the United States, it may not be well-suited for 

resource-constrained environments. We propose that AI-assisted portable breast ultrasound (BUS) could 

provide the best balance of access, cost-effectiveness, and practicality for breast cancer screening and 

early diagnosis in low- and middle-income countries. 

2.1.1  Mammography  

Mammography is the currently recommended mode for annual breast cancer screening for early cancer 

detection of average- to high-risk women by the American College of Radiology (jointly recommend 

digital breast tomosynthesis) [14], the European Commission Initiative for Breast Cancer Screening and 

Diagnosis [15], and the World Health Organization (recommend in all but limited-resource settings with 

weak health systems) [16]. There is a substantial body of literature supporting mammography’s efficacy 

as an early detection tool in reducing deaths from breast cancer [17-19]. Some guidelines recommend 

supplemental imaging for women with “extremely” dense breasts due to their increased risk of breast 

cancer coupled with the known decrease in sensitivity of mammography on higher density breasts [20]. 

Mammography consists of a low-dose X-ray of compressed breast tissue which allows radiologists to 

examine the internal structure of the breast and examine it for abnormalities. The low-dose X-ray beams 

are directed through the breast and received by an X-ray detector which converts the transmitted X-rays 

into an electrical signal. Cancerous breast tissue is typically denser than healthy breast tissue, causing it to 

attenuate the X-ray beam more than surrounding healthy tissue. Dense areas in the breast appear as bright 

spots on the generated mammography image. The cost of a digital 2D mammography machine is typically 

between $50,000-$100,000 [21]. Mammography systems are designed to be used in a single exam room, 

with minimal relocation, requiring the patient to travel to the clinic with a mammography machine 

(possibly on another island, when considering the USAPI) to get their exam.  
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2.1.2  Breast Ultrasound  

The high up-front and continuing maintenance costs of mammography machines as well as their size and 

requirement of dedicated exam rooms makes mammography inappropriate for many low-resource 

settings. If people face an undue burden of travel, mammography cannot be moved to them. If there is a 

lack of resources for the healthcare system, the high cost of initial purchase and regular maintenance may 

place mammography out of reach. Lastly, a mammography machine is a single-use tool; it can only 

feasibly be used for breast examinations. Mammography’s sensitivity is known to decrease dramatically 

in women with dense breast tissue, resulting in a risk of missing mammographically occult malignancies 

[20, 22, 23]. Asian, Pacific Islander, and Native Hawaiian women have been found to have denser breast 

tissue on average than White women [24-26].  

Handheld breast ultrasound (HHBUS) seems to address many of the limitations of mammography, 

especially in a low-resource setting. However, HHBUS still requires a trained sonographer or radiologist 

to perform exams. Ultrasonography systems can be used for imaging of many different anatomical 

structures and are comparatively low-cost. In a BUS system, high-frequency sound waves are passed 

through the breast tissue via a handheld transducer. Dense, possibly cancerous tissue reflects more sound 

waves than healthy tissue or benign, fluid-filled cysts. Unlike in mammography, dense breast tissue does 

not typically obstruct the view of a lesion. However, BUS is known to suffer from a high false-positive 

rate, leading to unnecessary biopsies being performed [10]. The cost of a BUS machine is typically 

between $20,000-$50,000 [27].  

2.1.2.1  Portable Breast Ultrasound 

Portable BUS addresses the final barrier to early breast cancer detection in limited-resource 

environments: the undue burden of travel. Portable BUS systems are highly compact, allowing a 

healthcare provider to travel to the patient with the equipment. Portable BUS systems range in design 

with different manufacturers offering purpose-built laptop-size hardware, transducers coupled with 

mobile apps, and transducers with built-in screens. The cost of a portable BUS system is typically 

between $5,000-$15,000 [28].  

2.2  Breast Lesion Detection in Ultrasound 

Lesion detection is the most fundamental problem in using imaging in diagnosing breast cancer. If a 

suspicious lesion is found, a breast biopsy will be scheduled and location information (i.e., breast 

laterality and quadrant) is essential for procedural planning. Radiologists use irregularities in tissue 

structure to recognize breast lesions from BUS imaging. Lesions are typically marked and measured by 
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the radiologist or radiology technician. We propose that AI-empowered breast lesion detection, coupled 

with comprehensive lesion descriptions in accordance with the ACR BI-RADS masses lexicon, can be 

used for early detection of breast cancer in low-resource areas. 

2.2.1  ACR BI-RADS Masses Lexicon 

The American College of Radiology (ACR) publishes 

the Breast Imaging Reporting & Data System (BI-

RADS) Atlas to provide radiologists with breast cancer 

diagnosis criteria, reporting guidelines, and risk 

assessment guidance from all types of imaging [1]. The 

ultrasound section of the BI-RADS Atlas contains a list 

of criteria specific to assessing breast health and 

recognizing breast cancer from BUS. The ACR BI-

RADS Masses lexicon has five characteristics to 

describe lesions in BUS: shape, orientation, margin, echo 

pattern, and posterior features. Table 1 contains a 

comprehensive breakdown of all sub-categories of each 

of the characteristics in the Masses lexicon. Certain 

characteristics in the Masses lexicon are more indicative 

of malignancy than others. Thus, a lesion’s description 

according to the Masses lexicon can be highly suggestive 

of malignancy status and is a large component of the 

final decision on whether to biopsy the lesion.  

 Each of the characteristics in the Masses lexicon is a description of a specific feature, as well as 

an indicator of malignancy status. Shape describes the structure of the lesion; irregular being more 

indicative of malignancy. Orientation describes the position of the lesion relative to the skin boundary on 

the breast; not parallel being more indicative of malignancy. Margin refers to the integrity of the border of 

the lesion, whether it is well defined (circumscribed) or blended into the surrounding tissue in some way 

(not circumscribed). All non-circumscribed subcategories are more indicative of malignancy. Echo 

pattern describes the echogenicity of the lesion in comparison to the surrounding breast tissue; all 

categories except anechoic being possible indicators of lesion malignancy. Lastly, the presence/absence of 

Table 1: ACR BI-RADS Masses lexicon for 

Ultrasound. Lesion attribute categories considered 

indicative of malignancy are highlighted in italics. 

Lesion Attribute Categories 

Shape Oval 

Round 

Irregular 

Orientation Parallel 

Not parallel 

Margin Circumscribed  

Not circumscribed  

− Indistinct 

− Angular 

− Microlobulated 

− Spiculated 

Echo Pattern  Anechoic  

Hyperechoic 

Complex cystic and solid 

Hypoechoic 

Isoechoic 

Heterogeneous 

Posterior 

Features 

No posterior features 

Enhancement 

Shadowing 

Combined pattern 
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imaging artifacts below the lesion are the posterior features. The presence of any posterior features 

suggests a difference in ultrasound wave speed through the tissue and can be indicative of malignancy.  

2.2.2  AI for Lesion Detection  

AI for lesion detection from BUS is an exploding research area. The popularity of BUS as a 

supplementary breast cancer screening technology in China (all women 45-69 screened with 

mammography and BUS [29]) has spurred substantial new research in AI-powered systems for breast 

lesion detection, with 98 new papers indexed by PubMed since January 2022 alone. Lesion detection can 

be considered as a single task (as in modern object detection frameworks) or as a combination of lesion 

localization and classification. Classification-alone AI solutions rely on the presence of a radiologist to 

either: a) preselect region(s) of interest from a BUS scan image or b) receive a malignancy classification 

for an entire image/exam and perform post-hoc lesion localization. Segmentation-alone AI solutions also 

depend on radiologist presence for diagnosis and biopsy recommendation decision based on lesion 

characteristic not captured by lesion delineation alone. Automation of both lesion localization and 

classification provides the most direct and cost-effective solution for lesion detection. We provide a brief 

review of breast lesion detection and combination classification/segmentation AI algorithms on B-mode 

(unenhanced) breast ultrasound only. 

 There is a sizable amount of literature in using traditional machine learning (non-deep learning 

methods, ML) combined with computer vision features to classify BUS scans by malignancy status. 

There is comparably less literature for traditional ML to classify and segment lesions from normal breast 

tissue. Ding et al. use texture features derived from gray-level co-occurrence matrices to determine a 

rough region of interest (ROI) for the lesion, then use generalized multiple-instance learning to classify 

subregions of the ROI according to malignancy status. This two-step approach implicitly excludes 

isoechoic lesions, which are unlikely to differ in texture from the surrounding breast tissue [30]. Zhou et 

al. use adaptive thresholding and disk expansion [31] for lesion boundary detection and computer vision 

features defined on half- and full-lesion contours [32]. Zhou et al.’s method is likely to overlook features 

of lesions with posterior enhancement or combined pattern by throwing out the bottom half of the lesion. 

Most recently, Masjidi et al. perform contourlet transformations for both localization and feature 

extraction before using a decision tree for their final classification [33]. 

 Deep learning (DL) for breast ultrasound is an accelerating research area. We further categorize 

DL approaches into location-explicit and location-implicit methods. Location-explicit methods train for 

localization performance; this category includes both detection and combination 
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classification/segmentation methods. Location-implicit methods train only for classification performance 

and use saliency maps for lesion localization. We highlight a few notable contributions but do not attempt 

provide a comprehensive review of the state of the field.  

 We first cover location-implicit methods. Shen et al. present the most robust breast cancer 

classification model to date, developed on 5 million scans from 150,000 patients. Shen et al.’s method 

considers all imaging for a single breast when computing their final decision and uses saliency maps for 

rough lesion localization. This method provides a well-informed breast cancer classification due to 

consideration of all lesion views and the surrounding breast tissue and performs with Area Under the 

Receiver Operating Characteristic (AUROC) of 0.976 on an external test set [10]. Xing et al. integrate 

radiologist-assigned BI-RADS malignancy scores (ACR BI-RADS scale, ranges from 1 to 5 in order of 

increasing likelihood of lesion malignancy) using attention with raw image data when training their 

model. A lesion must be scored as at least BI-RADS 4A (>2% chance of malignancy) or classified as 

malignant by two separate network branches for the image to be flagged as cancerous. This approach 

displays comparatively low sensitivity and the authors provide no assessment of saliency map quality 

[34]. Tanaka et al. consider mass-level cancer classification through a dual-ensemble approach wherein 

they separately classify views of the same lesion, using three varying crops of each view. Using a 

geographically diverse dataset from seventeen imaging centers across Japan, Tanaka et al. achieve an 

AUROC of 0.951. This method considers multiple views of the same lesion, but applies the same network 

to every view, possibly exacerbating weaknesses of the model through ninefold application per breast 

mass [35].  

Location-explicit methods have been applied to both still BUS image and video recordings. Lin et 

al. and Huang et al. both present methods which work directly on pre-recorded BUS video. Lin et al. use 

attention modules to fuse features from sets of three shuffled and consecutive frames, making their 

method ill-suited for real-time lesion detection [36]. Huang et al. construct a workflow to present cropped 

videos containing only video frames responsible for cancer classification to the radiologist, again 

resulting in a method which can only act on complete exam videos. Keyframes are selected using a 

reinforcement learning technique wherein the model is rewarded if the frame is highly indicative of 

malignancy or contains an annotated lesion [37].  

Location-explicit methods working on still BUS images are more easily constructed from 

standard clinical BUS, as complete video segments are rarely stored past exam time. Yun et al. and Gao et 

al. develop semi-supervised methods using a combination of BUS scans annotated with lesion location 
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(strongly-labeled) and scans with only biopsy results (weakly-labeled). Annotation cost for lesion location 

is high, making semi-supervised methods attractive for location-explicit methods. Yun et al. use a 

pretrained VGG-16 backbone to generate bounding boxes, achieving 66% correct localization and 

classification over their internal test set [38]. Gao et al. do systematic comparisons of semi- and fully-

supervised labels using a mean teacher strategy. Gao et al. provide no standard metrics for localization 

performance, limiting reliability of their reported results [39]. Dai et al. use strong supervision and further 

enhance their input data with a super-resolution generative adversarial network (SRGAN). An ensemble 

of finetunes YOLOv4 and CenterNet are used in linear combination to decide the final classification. The 

development of SRGAN necessitates significant training time and effort, while supplying marginal gains 

in overall performance [40]. Lastly, Meng et al. enhance the YOLOv3 architecture by integrating 

channel- and lesion-attention modules to emphasize the importance of whole scan-based features (i.e., 

tissue texture) in relation to lesion-specific features. Meng et al. achieve an impressive mean average 

precision of 0.84 on the homogeneous population contained in their internal testing set, collected from 

various BUS imaging centers in China [41].  

Commercial solutions exist in both the location-explicit and location-implicit categories. TaiHao 

Medical holds a current FDA approval for BU-CAD, their location-explicit AI-powered lesion detection 

BUS software. TaiHao Medical has not publicly released details of BU-CAD’s architecture. BU-CAD 

provides radiologists with lesion contour mapping, malignancy scores, and BI-RADS descriptors [42]. 

Koios Medical holds a current FDA approval for Koios DS, their location-implicit AI-powered lesion 

classification US software for both breast and thyroid lesions. Koios DS requires the lesion be localized 

by the radiologist before malignancy, shape, and orientation classification are performed, making it 

poorly suited for resource-limited scenarios [43]. Both BUS-CAD and Koios DS are approved only as 

reading aids for trained breast radiologists. 

Despite the wealth of research into AI-assisted systems for both breast lesion localization and 

classification, there are significant gaps in the literature. BUS data requires specialized training for 

acquisition and is noisy and unstandardized. These limitations have led to an over-reliance of academic 

work on several small public datasets for both training and validation, limiting the real-world 

generalizability of academic work in this area [44, 45]. When considering application of a system in a 

resource-constrained environment such as the USAPI, there are few location-explicit methods which 

consider model performance without radiologist intervention or “error-catching.” To the best of our 

knowledge, the literature contains no works which provide complete demographic statistics; including 
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breast density, age, race, BMI, and ethnic background. These notable gaps in previous work motivate the 

development of our own algorithm for breast lesion localization and classification.  

2.3  Mammographic Breast Density Classification in Ultrasound  

Computing personal breast cancer risk is a multi-faceted problem. The Breast Cancer Surveillance 

Consortium’s Risk Calculator and the Tyrer-Cuzick Risk Assessment Calculator are two well-known 

tools developed to aid physicians in accurately assessing patients’ breast cancer risk. The Breast Cancer 

Surveillance Consortium’s Risk Calculator was developed and validated in over 1.1 million women in the 

U.S. and relies on a woman’s age, race/ethnicity, family history in first-degree relatives (yes/no), 

existence and type of prior biopsies, and breast density to compute five- and 10-year risk scores relative to 

a woman’s racial/ethnic and age group [46]. The Tyrer-Cuzick Risk Assessment Calculator increases the 

granularity of these variables (i.e., taking in family history as counts of specific relatives who developed 

breast cancer) as well as including the following: menopause status, birth history, history of hormone 

replacement therapy, BRCA mutation status, and ovarian cancer diagnosis [47].  

Mammographic density is independent associated with breast cancer risk and represents a significant 

variable in overall breast cancer risk assessment, with higher breast density being associated with a higher 

risk of breast cancer [48]. Mammographic density can be reported as percentage/volumetric density, 

representing the amount of fibrous tissue in the breast relative to fatty tissue, or as an ordinal category (A, 

B, C, and D, in increasing order of density). A and B are broadly considered low density and C and D are 

considered high density. The categories for mammographic breast density are set by the ACR BI-RADS 

breast composition guidelines for mammography and represent increasing proportions of the breast 

composed of fibroglandular tissue, as visually assessed by the radiologist. Historically, the categories 

were assigned to increasing quartiles of the breast composed of fibroglandular tissue, but this definition 

has been removed. Table 2 includes example mammograms and BUS scans for women in each of the four 

defined ACR mammographic density categories. Assessment of mammographic breast density is crucial 

for providing accurate risk estimates and allocating screening to women at high risk, particularly in areas 

where resources are limited. We propose that AI-powered estimation of mammographic breast density 

from BUS can be used for breast cancer risk assessment in low-resource areas.  

Assessing mammographic breast density from BUS is not well-explored in the literature. The 

paradigm of needing to get a measure defined on mammography from HHBUS seems only applicable in 

resource-limited settings where mammography is not available as trans-modal estimation of risk factors 

seems unnecessary when mammography is readily accessed. One small study of 41 women found that 
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radiologist assessments of mammographic breast density on HHBUS and mammography demonstrate 

substantial intermodal ( = 0.65) and interobserver ( = 0.63) agreement [49]. Proxies for mammographic 

breast density based on acoustic speed of automated BUS (ABUS) through the breast tissue have been 

proposed and show strong correlation ( > 0.8) with percentage-based density measures [50, 51]. 

2.3.1  AI for Breast Density Classification  

The volume of AI developed for breast density classification varies greatly on imaging modality. There 

are many commercial and academic strategies for determining breast density from mammography images 

[52, 53], but few exist for HHBUS. Jud et al. create linear regression models with features representing 

equally-binned gray-level histograms for B-mode BUS images. They achieve a 0.67 coefficient of 

variation with percentage of fibroglandular tissue from subjects’ mammograms [54]. To the best of our 

knowledge, no literature exists on using DL for mammographic density assessment on BUS.  

Table 2: ACR BI-RADS lexicon for describing breast composition from mammography [1]. 

Category  Description Example Mammogram Example Ultrasound 

A The breasts are almost 

entirely fatty 

  

B There are scattered 

areas of fibroglandular 

density 

  

C The breasts are 

heterogeneously dense, 

which may obscure 

small masses 

  

D The breasts are 

extremely dense, which 

lowers the sensitivity of 

mammography 
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3  DATA  

The data used in this study are sourced from the Hawaiʻi Pacific Island Mammography Registry 

(HIPIMR). The HIPIMR is a prospective cohort of women that have participated in breast cancer 

screening at affiliated registry sites located within the catchment area of the University of Hawaiʻi Cancer 

Center. The HIPIMR collects breast imaging and breast health information for women participating in 

screening from 2009 to the present. Personal health information remains with the images to allow for 

annual matching to the Hawaiʻi Tumor Registry (HTR) to identify cancer cases.  

HIPIMR data consist of imaging, imaging metadata, selected clinical variables, selected patient 

characteristics, and biopsy-confirmed cancer status. Presence and granularity of clinical variables and 

patient characteristics depend on the source registry site and personnel collecting information. More 

complex imaging variables, such as ACR BI-RADS characterization or lesion location, are not included 

in HIPIMR data and must be determined on historical imaging by consulting radiologists. In this section, 

we outline data collection and cleaning procedures for HIPIMR and consultant-sourced data.  

3.1  Lesion Detection  

There were two mutually-exclusive datasets collected for the lesion detection task. The strongly-

supervised dataset was collected from a single clinical partner and additionally annotated by the study 

radiologist. The weakly-annotated dataset was collected from a single clinical partner and not additionally 

annotated. The strongly annotated dataset was pulled from the HIPIMR in August 2021, while the weakly 

annotated dataset was pulled from the 

HIPIMR in October 2022. The weakly 

annotated dataset was used to pretrain 

the backbone of our lesion detection 

model, while the strongly supervised 

dataset was used to train the complete 

model.  

3.1.1  Strongly Supervised  

Breast lesion location and the ACR BI-

RADS Mass lexicon characteristics 

were annotated by the consulting 

radiologist using a modified version of 

 

Figure 1: Screen capture of the lesion annotation tool. For each scan, if 

lesions are present, the consulting radiologist delineates visible lesions, 

provides the ACR BI-RADS Mass lexicon and final classifications, and 

writes free-text notes if necessary.  
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the VIA Annotation Software [55]. The modified tool was used to precisely delineate lesion boundary, 

provide classification of the Mass lexicon, and estimate lesion cancer status using the ACR BI-RADS 

categories for lesion malignancy. Figure 1 displays a screen capture of an example lesion delineation 

using this tool. The lesion malignancy ratings were used for internal comparison with both the developed 

AI tool and biopsy records from the HTR. 

Cancer status was collected from biopsy results stored in the HTR. If a record of cancer existed, all 

lesions for that subject were considered cases. Alternatively, if no record existed for the subject, then they 

were considered a control and all lesions were labeled as benign. This method of labeling retains the 

purest labels for a woman’s overall cancer status, as biopsy is the only way to definitively diagnose breast 

cancer. However, there is no guarantee that either a) every lesion in a woman’s breast is cancerous or b) 

the lesion in the image was in fact, the biopsied lesion.  

 

Figure 2: CONSORT-style chart illustrating selection criteria for patients for the strongly-annotated lesion detection dataset.  
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All patients with a record of BUS imaging in the HIPIMR were considered as possible cancer cases (n 

= 7,042). Exclusion criteria for cancer cases were as follows: 1) Subject missing US DICOM image (n = 

5,214); 2) Subject missing a positive biopsy record in the HTR (n = 438); 3) Breast cancer diagnosis date 

more than a year from most recent BUS imaging date (n = 341); 4) HTR has no record of breast tumor 

laterality (n = 339); 5) US DICOM recorded laterality excludes HTR tumor laterality (n = 261); 5) Patient 

is not female (n = 261). 111 cases were matched to 333 controls by birth year for labelling by the study 

radiologist. Exclusion criteria for controls were as follows: 1) Subject missing US DICOM image (n = 

5,214); 2) Subject has a positive biopsy record in the HTR (n = 4,776); 3) Subject has a mention of breast 

cancer in the HTR pathology master table (n=4,775); 5) Patient is not female (n = 4,525). Controls were 

semi-randomly selected from this pool. Figure 2 provides an illustrative CONSORT-style chart 

delineating the patient selection process. Patients were randomly split into training (70%), validation 

(20%), and testing (10%) sets. 

The selected 444 women had a total of 4,812 scans. After excluding scans with no assigned case 

group 4,759 scans were annotated by the study radiologist with a total of 6,266 lesions. Lesions (and their 

parent scans, if all lesions were incomplete) where the radiologist labeled any of the BI-RADS mass 

characteristics as “I don’t know” were excluded, leaving 6,252 lesions remaining (n = 4,751). Previously 

detected split scans (see Section 3.3.3.1 ) were split and assigned their respective lesions (n = 5,683). 

Scans were then subject to the following exclusion criteria: 1) Scans with a missing case assignment (n = 

5,619); 2) Scans with a missing laterality through the HTR (cases) or DICOM record (controls) (n = 

4,630); 3) Invalid or elastography scans as indicated by free-text notes left by the study radiologist. (n = 

4,446). After all filtering, 282 controls and 111 cases remained (n = 4,446). Table 3 displays a breakdown 

of image counts by category and data split. 

3.1.1.1  Weakly Supervised 

“Weakly-labeled” refers to scans which only have cancer/no cancer labels based on their matching to a 

biopsy record in the HTR. No additional lesion localization or BI-RADS mass lexicon annotation were 

done on these scans. The weakly labeled scans were used to perform image-level classification (cancer vs. 

no cancer) DL model, which was then fine-tuned on the lesion detection task with the strongly supervised 

data.  
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All patients with a record of BUS imaging in the HIPIMR were considered as possible cancer cases (n 

= 36,052). Exclusion criteria for cancer cases were as follows: 1) Subject missing US DICOM image (n = 

34,735); 2) Subject missing a positive biopsy record in the HTR (n = 707); 3) Subject is missing laterality 

in the HTR (n = 705); 4) Subject’s record in the HTR not coded as “invasive” cancer (n = 607); 5) 

Subject’s diagnosis is more than a year from their US imaging date (n = 505); 6) US DICOM recorded 

laterality excludes HTR tumor laterality (n = 501). 501 cases were matched to 1,503 controls by birth year 

and US scan manufacturer for labelling by the study radiologist. Exclusion criteria for controls were as 

follows: 1) Subject missing US DICOM image (n = 34,735); 2) Subject has a positive biopsy record in the 

HTR (n = 34,028); 3) Subject matched with a tumor of any behavior in the HTR (n = 6,721); 5) Controls 

were semi-randomly selected from this pool. Figure 3 provides an illustrative CONSORT-style chart 

delineating the patient selection process. Patients were randomly split into training (70%) and validation 

(30%) sets.  

 

Figure 3: CONSORT-style chart illustrating the selection criteria for patients in the weakly-labeled lesion detection dataset. 
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The selected 2,004 women had a total of 39,563 scans. Due to the nature of patient matching in the 

HTR, the export of scans for the weakly annotated dataset was not a mutually exclusive set with the set of 

strongly annotated images. To remedy this, we matched images based on their deterministic hashed file 

path, then excluded patients with strong annotations from the weakly annotated dataset. After this 

matching and exclusion, 1,401 controls and 410 cases remained (n = 37,662). Scans were subject to the 

following exclusion criteria: 1) Scans with scan area composed of more than 75% black pixels (n = 

37,308); 2) Elastography scans (n = 37,217); 3) Scans with Color Doppler highlighting indicated in the 

image metadata (see Section 3.3.2 ) (n = 34,281). Detected split scans (see Section 3.3.3.1 ) were split and 

added as separate images (n = 39,362). Split scans were then excluded based on presence of Color 

Doppler highlighting indicated in the image itself (see Section 3.3.2 ) (n = 33,475). After all filtering, 

1,347 controls and 408 cases remained (n = 33,475). Table 3 displays a breakdown of image counts by 

category and data split.  

3.2  Breast Density Classification 

Mammographic breast density labels were sourced from both clinical records and the convolutional 

network developed by Wu et al. for classifying BI-RADS breast density category from standard four-view 

screening mammograms [56]. Wu et al. report an overall Area Under the Receiver Operating 

Characteristic curve (AUROC) of 0.916 on their internal, held-out test dataset. We compute the AI labels 

for two reasons: first, radiologists’ clinical density assessment has been shown to be less reliable than 

computerized estimates [57-59]. Second, breast density labels from the Wu et al. classifier consist of a 

categorical pseudo-probability for each scan, across all four density categories. This additional 

information increases label richness and eases the AI learning process.  

Table 3: Final image counts and averages per woman for both the weakly annotated and strongly annotated lesion detection 

datasets.  

 Weakly Labeled  Strongly Labeled 

Characteristic, Unit Overall Train Valid Overall Train Valid Test 

Women, N 1,755 1,223 532 393 272 76 45 

Women with benign findings, N 1,347 937 410 282 195 54 33 

Women with malignant findings, N 408 286 122 111 77 22 12 

Images, N 33,475 23,437 10,038 4,446 3,180 819 447 

Images with benign findings, N 23,2376 16,453 6,823 1,661 1,206 523 292 

Images with malignant findings, N 10,199 6,984 3,215 2,785 1,974 296 155 

Average no. of images per woman, N 19.58 19.69 19.35 11.31 11.69 10.78 9.93 
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 All patients with a record of BUS imaging in the HIPIMR were considered as possible cancer 

cases (n = 36,710). Note that the breast density dataset was extracted from the HIPIMR after the addition 

of a new clinical partner, greatly increasing the potential data pool. Exclusion criteria for all women were 

as follows: 1) Subject missing US DICOM image (n = 34,735); 2) Subject’s US record is non-negative 

(BI-RADS >2) (n = 13,263); 3) Subject missing BI-RADS mammographic density within a year (n = 

11,845); 4) Subject is missing standard four-view mammogram from within a year of their US record (n = 

8,795). Cancer cases were matched to controls 10:1 on birth year and US machine manufacturer. Cases 

were subject to the following additional exclusion criteria: 1) Subject missing a positive biopsy record in 

the HTR (n = 1,062); 2) Subject’s date of breast cancer diagnosis was on or after their US imaging (n = 

383). Indicator variables were created for US less than a year before diagnosis (n = 232), US more than 

10 years before diagnosis (n = 2), and non-contralateral US (n = 45). Controls were subject to the 

 

Figure 4: CONSORT-style chart illustrating the selection criteria for patients in the ultrasound density dataset. 
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following additional exclusion criteria: 1) Subject has a positive biopsy record in the HTR (n = 7,508). 

Controls were semi-randomly selected from this pool. Figure 4 illustrates the complete patient selection 

process in a CONSORT-style flowchart.  

Case-control sets were randomly split into training (60%), validation (20%) and testing (20%) sets, 

stratified by breast density. Breast density strata were assigned by the most extreme AI-predicted density 

value in each group. A case-control set containing only women in BI-RADS categories B and C would be 

in the “middle” stratum, a case control-set containing at least one woman with BI-RADS category D 

breasts would be in the “dense” stratum, and a case-control set containing at least one woman with BI-

RADS category A breasts, and no women with BI-RADS category D breasts, would be placed in the 

“fatty” stratum. Two copies were made of the validation set; validation set A and validation set B.  

The selected 4,202 women had a total of 144,456 scans. The US scans were subject to the following 

exclusion criteria: 1) Invalid and duplicate scans were excluded (n = 114,210); 2) Scans with Color 

Doppler highlighting (see Section 3.3.2 ) (n = 111,863); 3) Split scans were detected and removed (n = 

111,214); 4) Scans whose scan area was less than 224 × 224 pixels after cropping (see Section 3.3.3 ) (n 

= 109,178). The scan filtering process for the training set and validation set A concluded here. The testing 

and validation set B underwent the following additional cleaning steps: 1) Scans were cropped to exclude 

any text information in the scan area; 2) Scans with detected lesion highlighting were dropped from the 

dataset; 3) Scans whose scan area was less than 220 × 220 pixels after cropping were excluded. Table 4 

displays a breakdown of image counts by category and data split. 

3.3  Breast Ultrasound Scan Preprocessing 

Breast imaging collected through the HIPIMR originate from various clinical environments each housing 

a collection of hardware, software, and technician combinations. This natural data collection process 

results in highly irregular data, presenting in many different formats. We identified six factors which also 

influence the presentation of the scan, which cannot be reliably identified from software metadata or 

 Table 4: Final image counts and averages per woman for the breast density classification task. 

Characteristic, Unit Overall Train Validation Test 

A B 

Women, N 4,100 2,452 819 814 829 

Women with benign findings, N 3,722 2,226 742 737 754 

Women with malignant findings, N 378 226 77 77 75 

Images, N 104,965 63,467 22,185 18,337 19,313 

Images with benign findings, N 93,692 56,406 19,776 16,474 17,510 

Images with malignant findings, N 11,273 7,061 2,409 1,863 1,803 

Average no. of images per woman, N 25.60 25.88 27.09 22.53 23.30 
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technician notes: resolution, shape, number of views, method, marker presence, and text presence. Table 5 

provides examples and a complete breakdown of all six factors contributing to image heterogeneity.  

Scan preprocessing varied slightly across the density assessment and lesion detection tasks. For lesion 

detection, neither lesion markers nor overlaid text were identified or removed from BUS scans. For the 

sake of simplicity, dual-view scans were simply excluded from the dataset rather than being split into two 

training examples in the density classification task. Exclusions were minimized for lesion detection scan 

preprocessing to preserve as much of our limited dataset as possible. Exclusions were more 

comprehensive with the ultrasound density classification task.  

3.3.1  PHI Removal  

Protected Health Information (PHI) was removed from the breast ultrasound scans using several different 

methods. Breast ultrasound scans typically contain identifying information about the patient, as well as 

the time/location of scan collection. This information is stored on the scan image itself, as well as in the 

DICOM header. Thus, an independent de-identifying approach had to be used for each possible location 

of PHI. To remove PHI from the image metadata, the scans were exported from the HIPIMR using a PNG 

image format, detaching the image information from the information included in the DICOM header. This 

separation of image from DICOM information removed a large portion of the PHI (including collection 

location/time, patient identifying information, and specific patient demographic information). To remove 

Table 5: Description of factors contributing to scan heterogeneity which cannot be otherwise reliably identified through 

metadata or technician notes. Each factor is assessed through examination of the BUS image itself. Scan shape, number of 

views, and method jointly determine preprocessing and inclusion/exclusion of the image.  

Factor Description  Possible Values 

Scan Resolution Scan resolution in pixels. Depends on 

hardware/software combination. 

322 scan resolutions ranging from 278 × 

432 to 956 × 668 pixels. 

Scan Shape Shape of scan area containing breast tissue. 

Depends on probe type (linear/convex) and 

software vendor. 

Rectangular, trapezoidal, or convex. 

Number of Views Number of scan areas in a single image. 

Depends on technician preference and software 

capabilities. 

Single scan area (single-view), or two 

separate scan areas (dual-view). 

Method Specific BUS method used. Depends on 

radiologist preference. Blood flow (Doppler) 

and tissue stiffness (elastography) can be 

indicative of malignancy. 

B-mode (unenhanced), Doppler (contain 

bounding box and blood flow highlighting), 

or elastography (contain system overlays). 

Marker Presence Presence/absence of markers highlighting 

lesion location/size, added by technician. 

Depends on combination of software and 

technician preference. 

At least four different annotation styles 

varying by color and annotation symbol 

Text Presence Presence/absence of text overlaid on scan area, 

added by technician. Depends on combination 

of software and technician preference. 

Can describe probe position, laterality, or 

additional features of the scan (presence of 

an implant, nipple location, etc.) 

 



19 

 

PHI from the scan image itself, the images were cropped based on the RegionLocation coordinate values 

in the DICOM header. If there were more than one set of coordinates present, the first set was used. These 

coordinates specify which areas of the image contain the scan, excluding the header information. 

3.3.2  Method 

Breast ultrasound scans can be captured either unenhanced (standard US B-mode with no overlays or 

special features), with Color Doppler blood flow highlighting (colorful graphic overlays showing blood 

flow velocity in breast tissue) and strain elastography (also measures tissue stiffness/elasticity in response 

to pressure on breast tissue). Doppler and elastography scans were programmatically identified and 

excluded from both the lesion detection and ultrasound density analyses for the sake of consistency in the 

input data. Furthermore, enhancements to BUS represent additional cost and may not be accessible for 

low-resource environments. 

Color Doppler and elastography scans were excluded from both the ultrasound density and lesion 

detection tasks and were jointly identified through HSV color masks for red, orange, green, and blue 

tones in the image as well as a mask highlighting Color Doppler scan artifacts (a white square outlining 

where blood flow highlighting will be shown). A subset of the Color Doppler scans can be identified 

using the PulseRepetitionFrequency DICOM tag, but the remaining scans need to be identified using the 

image-based approach. 

3.3.3  Number of Views 

In an effort to standardize the number of lesions of interest per scan image, splitting dual-view scans into 

two single-view images is desirable. Splitting dual-view scans also facilitates a standardized center 

cropping procedure for all examples. Without splitting, center crops of dual-view scans would contain the 

center dividing line, a highly unnatural shape. Because we were unable to identify a feature in the 

DICOM header metadata which identified dual-view scans, a programmatic approach was needed to both 

identify and split dual-view scans. Identification and splitting of dual-view scans were approached 

separately. Identification of dual-view scans was applied to both the ultrasound density and lesion 

detection tasks, while splitting was applied to lesion detection only. Dual-view identification algorithms 

differed between lesion detection and density classification due to the relative proportion of both 

SIEMENS brand and elastography scans in the datasets for each task, with comparatively less in the 

density task.  
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3.3.3.1  Lesion Detection 

To identify a dual-view scan, HSV color masks were first applied to certain green and teal color ranges in 

the scan area. Elastography scans contain a green guiding line which is frequently near the center of the 

image which displays very similarly to the dividing line in dual-view scans when analyzed with edge 

detection. If a green guiding line was present, the scan was identified as single-view, as elastography 

imaging is only present in our dataset with single-view scans. Single-view scan from SIEMENS brand 

machines in our dataset had a certain number of characters of the teal SIEMENS logo cropped when 

extracted from the HIPIMR, distinct from the number of characters cropped from dual-view scans. The 

HSV color ranges of both the guiding lines and logo were determined heuristically.  

After elastography and SIEMENS single-view images were identified using color ranges, an 

additional filter was applied on the image dimensions. If the scan width was less than 75% of its height, 

the scan was determined to be single-view. This proportion was determined heuristically from the dataset, 

as all dual-view scans were at least as wide as they were tall. The remaining scans were converted to 

grayscale and Canny edge detection was used to identify edges in the image. Canny edge detection 

involves a series of steps applied to a grayscale image: noise reduction, determining pixel intensity 

gradients, local-maximum suppression, and pixel connectivity thresholding. We will refer to pixels which 

the Canny algorithm identified as edges in the scan as "edge-pixels." If a scan's midline contained more 

than 100 edge-pixels, and at least ten more edge pixels than displaced midlines (10 pixels to either side of 

the midline), the scan was determined to be dual-view. Dual-view scans were then cropped along the 

identified midline to produce two separate data points. The metadata from the original scan, including 

case-control group assignment, patient identifier, and label, were duplicated into the new records to 

maintain integrity between our data partitions. The original scan was removed from the dataset.  

3.3.3.2  Breast Density Classification 

To identify a dual-view scan, first two filters were applied on the image dimensions. If the scan width was 

less than its width the scan was determined to be single-view. This proportion was determined 

heuristically from the dataset, as all dual-view scans were at least as wide as they were tall. The second 

filter identified scans with a height of more than 600 pixels and a width of less than 900 pixels as being 

dual-view. These pixel values were determined through examination of the SIEMENS brand dual- and 

single-view scans present in the dataset. The remaining scans were converted to grayscale and Canny 

edge detection was used to identify edges in the image. If a scan's midline contained more than 100 edge-

pixels, the scan was determined to be dual-view. Dual-view scans were dropped from the dataset.  
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3.3.4  Scan Shape 

The scan area cropping approach used was largely influenced by [59] and [9] and was performed after 

dual-view images were identified and optionally split. Breast ultrasound scans typically contain 

background areas containing textual metadata about the scan. These background areas are filled with 

black pixels and annotated with light-colored text. Removing the background increases the ratio of useful 

pixels in the image. The method for removing the black background from the scan involved two steps, 

consistent with the approach described in [59]. First, cropping of the background pixels was done via scan 

area identification through binary erosion and dilation. Second, additional cropping was done dependent 

on the scan shape (one of rectangular, trapezoidal, and convex). Cropping via erosion and dilation was 

applied to both the ultrasound density and lesion detection tasks the same way, while scan shape-

dependent cropping was applied differently to each task.  

The erosion and dilation procedure began with converting the image to a binary mask based on pixel 

color. All pixels with RGB values distinct from the mode pixel value were saved in a binary image. 

Examples of binary masks can be found in Figure 5(b). Binary dilation and erosion were then applied to 

the binary mask for 𝑛 iterations, depending on scan manufacturer. The number of iterations and the size 

 

Figure 5: Examples of the erosion/dilation scan cropping procedure applied to the scans in both the breast density and lesion 

detection tasks. (a) Images as they were extracted from the HIPIMR. (b) Binary masks of the images, based on thresholding 

mode-valued pixels. (c) Binary masks of the scans after five iterations of dilation and erosion were applied. (d) The largest 

connected nonzero component (LCC) of the scan that was identified, after an additional round of dilation had been applied. 

(e) The red bounding box highlights the final dimensions each scan was cropped to. 
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of the kernel were determined heuristically. In essence, dilation of a binary image enlarges the nonzero 

image components, filling gaps and smoothing out intrusions into the component. Erosion of a binary 

image shrinks the nonzero image components, smoothing extrusions from the nonzero components. 

Figure 5(c) shows examples of binary masks post-erosion and dilation procedures. 

After erosion and dilation were performed on the binary mask of the ultrasound scan, the largest 

connected nonzero component (LCC) in the image was identified, and a single dilation iteration was 

performed to smooth zero-valued intrusions into the LCC. Examples of the identified LCC can be seen in 

Figure 5(d), post-dilation. A bounding rectangle was constructed around the LCC, containing the entire 

component. For scans containing breast implants, high levels of acoustic shadowing, or very large benign 

lesions, the binary mask did not retain the entire scan area. Examples of the bounding rectangles are 

highlighted in red in Figure 5(e).  

3.3.4.1  Lesion Detection 

For images with a rectangular scan area, this was the end of the cropping procedure in the lesion detection 

task. Rectangular scans were cropped to the dimensions of their bounding rectangle found via the 

erosion/dilation procedure. Scans with a convex scan area (as shown in the third row of Figure 5) or a 

trapezoidal scan area, still need to be identified and cropped further. Note that, differing from [59], 

convex scans were only additionally cropped along the vertical axis, and trapezoidal scans were only 

additionally cropped along the horizontal axis. 

To detect and vertically crop a scan with a convex scan area, our method was a subset of the scan 

area cropping method in [60]. Imagine a Euclidean coordinate system overlaid on our binary mask, 

wherein the top, left pixel corresponds to (0,0). The 𝑦-coordinate of the first nonzero pixel along the 

vertical midline of the bounding rectangle is defined as 𝑦𝑎. The y-coordinate of the upper edge of the 

bounding rectangle is defined as 𝑦𝑡𝑜𝑝. If 𝑦𝑎 > 𝑦𝑡𝑜𝑝 + 20, we determined we had detected a convex scan 

and 𝑦𝑎 was defined as the new top of the bounding rectangle. Similarly, the 𝑦-coordinate of the row with 

the highest proportion of nonzero pixels is defined as 𝑦𝑏, and the 𝑦-coordinate of the bottom of the 

bounding rectangle is defined as 𝑦𝑏𝑜𝑡𝑡𝑜𝑚. Figure 6(a) provides an illustrative example of the reference 

coordinates. If 𝑦𝑏 > 𝑦𝑏𝑜𝑡𝑡𝑜𝑚 −
1

2
ℎ, where ℎ represents the height of the bounding rectangle, 𝑦𝑏 was 

defined as the new bottom of the bounding rectangle.  

To detect and horizontally crop a scan with a trapezoidal scan area, we took a similar approach. 

Imagine the same Euclidean coordinate system overlaid on our binary mask. The leftmost 𝑥-coordinate of 
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of the bounding rectangle is defined as 𝑥𝑙𝑒𝑓𝑡, the rightmost 𝑥-coordinate of the bounding rectangle is 

defined as 𝑥𝑟𝑖𝑔ℎ𝑡, the 𝑦-coordinate of the horizontal midline of the bounding rectangle is defined as 𝑦𝑚𝑖𝑑, 

and 𝑦𝑡𝑜𝑝 is defined as before. Figure 6(b) provides an illustrative example of the reference coordinates. If 

the number of mode-valued pixels along 𝑦𝑚𝑖𝑑 was greater than two times the number of zero-valued 

pixels along 𝑦𝑡𝑜𝑝, a trapezoidal scan was detected and 𝑥𝑙𝑒𝑓𝑡 and 𝑥𝑟𝑖𝑔ℎ𝑡 were both moved in by half the 

number of zero-valued pixels.  

 

 

  

 

Figure 6: Illustration of additional cropping done on the lesion detection task based on programmatically-detected scan 

shape. (a) The procedure for convex scans was as follows: 𝑦-coordinate of the first nonzero pixel along the vertical midline 

of the bounding rectangle identified by the dilation and erosion procedure is defined as 𝑦𝑎. If 𝑦𝑎 > 𝑦𝑡𝑜𝑝 + 20, 𝑦𝑡𝑜𝑝 ≔ 𝑦𝑎. 

The 𝑦-coordinate of the row with the highest proportion of nonzero pixels is defined as 𝑦𝑏. If 𝑦𝑏 > 𝑦𝑏𝑜𝑡𝑡𝑜𝑚 −
1

2
ℎ, where ℎ 

represents the height of the bounding rectangle, 𝑦𝑏𝑜𝑡𝑡𝑜𝑚 ≔ 𝑦𝑏. (b) The procedure for trapezoidal scans was as follows: The 

𝑦-coordinate of the horizontal midline of the bounding rectangle is defined as 𝑦𝑚𝑖𝑑. If the number of mode-valued pixels 

along 𝑦𝑚𝑖𝑑 was greater than 2 times the number of zero-valued pixels along 𝑦𝑡𝑜𝑝, a trapezoidal scan was detected and 𝑥𝑙𝑒𝑓𝑡  

and 𝑥𝑟𝑖𝑔ℎ𝑡 were both moved in by half the number of zero-valued pixels along 𝑦𝑡𝑜𝑝. 
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3.3.4.2  Breast Density Classification 

All images were passed through an additional scan-shape determining cropping step in the breast density 

classification task. Imagine a Euclidean coordinate system overlaid on our binary mask, wherein the top, 

left pixel corresponds to (0,0). The 𝑦-coordinate of the upper edge of the bounding rectangle is defined as 

𝑦𝑡𝑜𝑝. The 𝑦-coordinate of the bottom edge of the bounding rectangle is defined as 𝑦𝑏𝑜𝑡𝑡𝑜𝑚. We then 

determine the first and last 𝑥-coordinates where there is a white pixel (in our non-masked image, 

corresponds to the beginning of the scan area along the 𝑥-axis) in three horizontal slices of the image: 

[𝑦𝑡𝑜𝑝,
1

3
ℎ + 𝑦𝑡𝑜𝑝) , [

1

3
ℎ + 𝑦𝑡𝑜𝑝,

2

3
ℎ + 𝑦𝑡𝑜𝑝), and [

2

3
ℎ + 𝑦𝑡𝑜𝑝, 𝑦𝑏𝑜𝑡𝑡𝑜𝑚] where ℎ = 𝑦𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑦𝑡𝑜𝑝. This 

process results in three sets of two 𝑥-values; (𝑥𝐿
1, 𝑥𝑅

1), (𝑥𝐿
2, 𝑥𝑅

2), (𝑥𝐿
3, 𝑥𝑅

3). We take the median values of 𝑥𝐿
∙  

and 𝑥𝑅
∙  and crop the image width-wise with these median 𝑥-coordinates.  

Height cropping was done using a similar process. Explicitly, the 𝑥-coordinate of the leftmost edge of 

the bounding rectangle is defined as 𝑥𝑙𝑒𝑓𝑡. The 

𝑥-coordinate of the rightmost edge of the 

bounding rectangle is defined as 𝑥𝑟𝑖𝑔ℎ𝑡. We 

then determine the first and last 𝑦-coordinates 

where there is a white pixel (in our non-masked 

image, corresponds to the beginning of the scan 

area along the 𝑦-axis) in three vertical slices of 

the image and where 𝑤 = 𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑥𝑙𝑒𝑓𝑡. This 

process results in three sets of two 𝑦-values; 

(𝑦𝑇
1 , 𝑦𝐵

1), (𝑦𝑇
2, 𝑦𝐵

2), (𝑦𝑇
3, 𝑦𝐵

3). We take the 

median values of 𝑦𝑇
∙  and 𝑦𝐵

∙  and crop the image 

height-wise with these median 𝑦-coordinates. 

Figure 7 provides an illustrative example of the 

reference coordinates. 

3.3.5  Marker Presence  

Marker presence was only evaluated for the breast density classification task. BUS scans with markers 

were flagged and optionally (depending on data split) excluded based on the lesion marker presence. Scan 

artifacts such as lesion markers can provide signals of scan malignancy and cancer risk that are 

undesirable for an AI system designed for unenhanced scans. Scans with markers were not excluded from 

 

Figure 7: Illustration of additional cropping done on the breast 

density classification task. Pink lines represent the borders of 

our horizontal image slices used to determine 𝑥𝐿
∙  and 𝑥𝑅

∙ . Blue 

lines represent the borders of our vertical image slices used to 

determine 𝑦𝑇
∙  and 𝑦𝐵

∙ .  
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the lesion detection class due to the limited amount of data available. Scans with lesion markers were not 

cropped and re-introduced into the dataset simply because lesion markers tend to be placed near the center 

of the scan area, leaving little surrounding breast tissue to be allocated to a new image. Lesion markers 

were identified using HSV color masks for green, yellow, white (only included for BUS images collected 

on ATL and Philips Medical Systems equipment), and blue tones in the image. The resulting binary mask 

was center cropped to exclude software artifacts and passed through a single round of binary dilation. 

After dilation, the process for assessing lesion marker presence varied by BUS machine manufacturer.  

For scans collected on Philips Medical Systems or ATL-branded equipment, contours were 

extracted from the image. Because the gray and white HSV color masks frequently picked up areas of 

high fibroglandular tissue density in addition to the lesion markers, we applied a size- and shape-based 

analysis to determine if a contour represented a lesion marker or not. If the approximate polynomial shape 

of the contour had between 14 and 17 vertices (correspond to the cross and “X” shapes of lesion markers) 

and the height and width of the contour was between 10 and 20 pixels, then a lesion marker was detected 

in the scan. The number of vertices and number of pixels were determined empirically. If more than two 

markers were detected in the scan it was excluded.  

For scans collected with all other brands of BUS machine, only a size-based analysis was 

performed. If the height and width of the contour were each greater than five pixels, then a lesion marker 

was detected in the scan. The number of pixels was determined empirically. If at least one marker was 

detected in the scan it was excluded. 
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3.3.6  Text Presence 

Text presence was only evaluated for the breast density classification task. BUS scans with text were 

flagged and optionally (depending on data split) cropped to exclude text. Scans with text in the image 

such that a 200 × 200 pixel crop could not be constructed from the remaining scan area were dropped. 

Text overlaying the scan area was identified using HSV color masks for yellow, white (only included for 

BUS images collected on Philips Medical Systems equipment), and gray tones (only included for BUS 

images collected on ATL equipment) in the image. The resulting binary mask was passed through four 

iterations of binary erosion and dilation with a (2,2) kernel to reduce noise, then a final dilation with a 

(9,9) kernel to ensure cropping excluded the entire annotation area. Figure 8 provides an illustrative 

example of text presence cropping done on three scans.  

 

 

Figure 8: Examples of the erosion/dilation text cropping procedure applied to the scans in the breast density task. (a) 

Images after applying scan area cropping. (b) Binary masks of the images, based on thresholding mode-valued pixels. (c) 

Binary masks of the scans after four iterations of dilation and erosion, and a final (9,9) dilation were applied. (d) The red 

bounding box highlights the final dimensions each scan was cropped to.  
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4  MODELS  

In this section we describe different model architecture choices for the breast density classification and 

lesion detection and BI-RADS mass lexicon description tasks. Convolutional neural networks (CNN) are 

the standard for deep learning development with images and have shown to be effective for medical 

imaging as well as natural images. CNNs encode spatial dependency between pixels in an image, making 

them well-suited for problems involving tissue texture, such as breast density classification and 

localization of breast lesions.  

4.1  Lesion Detection  

Object instance detection is a classical computer vision problem wherein we want to both localize objects 

with a segmentation mask and classify them into object types. For lesion detection, this means precisely 

outlining the lesion boundary, identifying the lesion as benign or malignant, and classifying the lesion 

according to the BI-RADS masses lexicon. All model building and training were done using PyTorch 

[61] and MetaAI’s Detectron2 [62].  

4.1.1  Architecture 

Our lesion detection model is a Mask-RCNN implemented through MetaAI’s Detectron2 object detection 

framework [62, 63]. Mask-RCNN is a state-of-the-art large object detection model extending the Faster-

RCNN and RCNN architectures to provide instance segmentation masks in addition to bounding boxes 

for detected objects. Mask-RCNN involves three separate sub-networks in its original form: the feature 

proposal network, the region proposal network, and the ROI head. We extend the ROI heads section of 

the architecture to include additional sub-networks for the BI-RADS mass lexicon classification. A short 

description of each sub-network of our Mask-RCNN architecture is provided below.  

The feature proposal network (or the backbone network) is a large convolutional network. Mask-

RCNN was originally developed on ResNet frameworks but can be extended to use any reasonably large 

convolutional network for the backbone. We use a ResNet-101. Embeddings are extracted from the 

backbone network and fed into the next step of the network, the region proposal network. Backbone 

networks are further defined by at what stage in the backbone architecture features are extracted. The 

ResNet101-FPN feature proposal network we use is feature pyramid network-style backbone [64]. 

Features are from four intermediate layers in the network as well as the final residual block to be fed into 

the next step, the region proposal network. The feature maps extracted from different layers in a feature 

pyramid network are up-sampled to match the input size of the network. Features from later backbone 
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layers detect larger objects/coarser patterns, while earlier layers focus on smaller objects/finer patterns 

due to the relative size of the receptive fields.  

The region proposal network (RPN) is where proposals for object bounding boxes are suggested 

to the final stage, the ROI head. Embeddings extracted from the feature proposal network are fed into an 

initial set of convolutional layers in the RPN. For each feature map, the convolutional layers predict 

anchor and “objectness” scores for each pixel in the input image. Possible different sizes of bounding 

boxes, called anchors, are placed at each point on the feature maps and aligned to ground-truth bounding 

boxes during training. Boxes are then re-sampled to match a predefined foreground/background 

proportion and decrease the overall number of redundant boxes proposed. Finally, the best set of n 

(typically 1,000) bounding boxes are chosen based on their predicted “objectness” scores and passed to 

the final stage; the ROI head. 

Input to the ROI head consists of the proposed bounding boxes from the RPN, as well as all the 

feature maps from the feature proposal network. Regions of Interest (ROIs) are chosen from the feature 

maps according to the proposed bounding boxes and rescaled/aligned to the input image (ROI pooling). 

The ROIs are then fed jointly into the mask and box heads in a traditional Mask-RCNN. We further add 

on heads for each of the BI-RADS mass categories, for a total of seven output heads. All heads follow the 

same general workflow: ROI pooling, convolutional layers, fully-connected layers, and non-maximum 

suppression to a target number of detections (we used MetaAI’s default value of n = 100 in training and n 

= 4 in testing).  

4.1.2  Training 

Model training was undertaken in two stages: feature proposal network pretraining and Mask-RCNN 

training. The feature proposal network was pretrained starting from an ImageNet-initialized ResNet-101 

backbone, and training on the weakly-labeled BUS dataset for image-level cancer vs. no cancer 

classification. The 3-channel images were heavily augmented during training with random cropping, 

random ColorJitter, random equalization, and random horizontal/vertical flipping to discourage 

overfitting on the pretraining data. All models were trained with stochastic gradient descent with a 

cyclical learning rate scheduler to vary the learning rate throughout training. The minimum and maximum 
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learning rates were tuned between 

[0.0001, 0.01] and [0.01, 0.5], 

respectively and the batch size was tuned 

between [32, 128]. The input features to 

the model were also tuned between 3-

channel grayscale input and RGB input. 

All models were trained with early 

stopping with a patience of 5 epochs for 

a decrease in the validation binary cross-entropy loss, with a maximum of 500 epochs. Different model 

configurations were compared and the best was chosen based on validation loss. The chosen feature 

proposal network backbone (minimum and maximum learning rates were 0.01 and 0.1, respectively; 

batch size of 128; RGB input) was then passed into the training pipeline for the Mask-RCNN as initial 

weights to provide a warm start for training the model. The pretrained backbone had an AUROC of 0.68 

on the validation dataset.  

This pretrained model was then used to initialize the feature extraction backbone for the lesion 

detection model. The strongly-labeled BUS dataset was used for training, validation, and testing of this 

stage of model design. We tuned our model structure and training loop on top of the Detectron2 default 

architecture and hyperparameter values for Mask-RCNN [65]. Table 6 describes the default architectures 

(Mask head) and final tuned architectures (Box and BI-RADS mass characteristic heads). Table 7 

describes the hyperparameter search space. All search spaces were explored by hand and a total of nine 

models were trained. Mask heads were also trained on non-optimal backbone networks in the same search 

space, but none outperformed the chosen backbone network.  

The box head was 

trained class-agnostic due to 

no marked difference in 

lesion size between benign 

and malignant lesions in our 

dataset and the mask head 

was trained class-aware due 

to the marked differences in 

shape between benign and 

Table 6: Architecture structure for the ROI heads of the mask, box, and 

BI-RADS Mass characteristic heads. Note that the dimensions of the 

mass characteristic heads were tuned in tandem to decrease the search 

space.  

 Mask Box BI-RADS Mass 

Characteristics 

# FC layers 0 3 2 

FC dimensions N/A 1024 512, 256 

# Conv layers 4 6 4 

Conv dimensions 256 256 128 

Pooler resolution 14 7 7 

 

Table 7: Search space of the hand-tuning of the hyperparameters and ROIHead 

branches architecture. Note that the dimensions of the mass characteristic heads were 

tuned in tandem to decrease the search space. 

Parameter  Search Space  Selected Value 

Backbone Frozen Stage • Stem only  

• 1 residual block 

1 residual block 

BI-RADS Heads FC layer 1 {256, 512} 512 

BI-RADS Heads FC layer 2 {256, 512} 256 

Learning rate warmup iterations {500, 1000, 2000} 1000 

Box Head # conv. layers {4, 5, 6} 6 

Box Head # FC layers {2, 3, 4} 3 

Base learning rate  [0.001, 0.1] 0.02 

 



30 

 

malignant lesions. All BI-RADS characteristics were trained class-agnostic, but class-aware training for 

the BI-RADS heads, as well as custom head architectures for each, is an area of future work. 

4.2  Breast Density Classification  

In classification in computer vision, we typically want to categorize our images into n nominal categories 

according to their features. In breast density classification, the problem is originally defined as an ordinal 

classification. However, we approach it as nominal. Our pseudo-probabilistic labels from the deep 

learning algorithm in [56] were found to display non-ordinal distributions (bi-modal) in only 1.3% of all 

scans. We chose not to enforce ordinality through the loss due to ordinality being implied in the image 

labels. All model building and training were done using PyTorch [61], Optuna [2], and Kornia [66].  

4.2.1  Architectures  

Our breast density classification model is a fully convolutional network, with the last layer concatenating 

all features and computing the final four-class multinomial pseudo-probability distribution. We chose this 

architecture based on the structure of the problem; breast density is a textural feature, defined over the 

entire breast. Using a fully convolutional structure (i.e., no pooling) allows for all information about the 

texture in the image to be retained passing between layers. We also experimented with adding residual 

blocks, batch normalization, and a U-Net style architecture. However, the fully convolutional network 

consistently outperformed the other architecture choices.  

4.2.2  Training  

Model training was undertaken in a single stage for this section of the project. The single-channel breast 

density images were augmented during training with random cropping, random to discourage overfitting. 

Median filtering, histogram equalization, and image normalization were also experimented with, but were 

found to have no effect on model validation performance. Based on initial experiments [67], we 

determined that brightness augmentation of images was helpful to the network. Breast density is defined 

on the visually assessed proportion of fibroglandular tissue, so brightness augmentation may make it 

easier for the network to pick out the brighter portions which are contributing to the final judgment. Three 

brightness augmentations were tested and added to the image as additional input channels: 𝑝 + 𝑝 (up), 

𝑝 − 𝑝 (down), 𝑝 ± 𝑝 (both), and no augmentation (none) where 𝑝 represents the mean gray-level value in 

the scan. Brightness augmentation was tuned with Optuna.  

All models were trained with either (1) a cyclical learning rate scheduler to vary the learning rate 

throughout training (with stochastic gradient descent optimization algorithm), or (2) with a decaying 
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learning rate based on 

encountering plateaus in validation 

loss (with Adam optimization 

algorithm). The learning rate 

plateau strategy was found to be 

more effective in decreasing the 

validation loss throughout training. 

All remaining hyperparameters 

were tuned through Optuna. A 50-

sample optimization search was performed with a Tree-structured Parzen Estimator sampler with 16 

warmup, randomly-sampled trials. Table 8 details the search space for the Optuna runs.  

Due to breast density estimation from BUS being a relatively unexplored research area, we also chose 

to train two simpler models for comparison, derived from the features developed by Jud et al. [54]. Jud et 

al. define 33 evenly-spaced gray-level bins which are used as input to a linear regression model to 

precisely define proportion of fibroglandular tissue in the breast. We take Jud et al.’s gray-level features 

and feed them into a multiclass logistic regression and multi-layer perceptron model to provide a baseline 

of performance for our model. The multi-layer perceptron was trained with two hidden layers (sizes 512 

and 256, respectively), a learning rate of 0.001, and the Adam optimizer.  

Table 8: Search space of the tuning of the hyperparameters and architecture of 

the fully convolutional network for breast density classification. 50 samples 

were drawn from the search space using the Optuna TPESampler with 16 

warmup iterations [2]. 

Parameter  Search Space  Selected Value(s) 

# Convolutional layers {2, 3, 4, 5, 6} 3 

# Convolutional filters [16, 128] 32, 96, 64 

Kernel Size {3, 5, 7, 9} 7, 5, 3 

Learning rate (LR) [1 ∙ 10−7, 1 ∙ 10−3] 0.001 

Dropout  [0, 0.7] 0.3 

Brightness augmentation {up, down, both, none} down 

LR Scheduler/ 

Optimization algorithm 

{cyclical/SGD, 

plateau/Adam} 

plateau/Adam 
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5  RESULTS  

5.1  Lesion Detection  

The lesion detection model was evaluated 

using average precision (AP) at intersection 

over union (IoU) 0.5. (AP@50). IoU is 

defined as the area of intersection between 

the ground truth object and the predicted 

object over the union of their areas. An IoU 

of 0 would mean that the prediction does not 

overlap the ground truth whatsoever and an 

IoU of 1 would indicate perfect 

correspondence of ground truth and prediction. We can threshold the IoU value at α for computing the 

average precision. A detection with IoU ≥ α is considered a true positive, 0 < IoU < α is considered a 

false positive, and IoU = 0 is considered a false negative (ground truth detection missed completely). IoU 

can be defined for both mask and bounding box targets. AP@50 is defined as the area under the precision 

recall curve when we classify our detections according to the IoU threshold 𝛼 = 0.5. We compute the 

area under the precision recall curve for each sub-categorization separately, then take the mean to come to 

our final AP value. Each BI-RADS characteristic classification was evaluated independent of lesion 

cancer classification. 

The best-performing Mask-RCNN model performed with average precision at intersection over union 

0.5 (AP@50) = 38.5 (bounding box) and AP@50 = 39.2 (segmentation) for detection and classification of 

lesion cancer status. Results for each of the BI-RADS mass lexicon characteristics are enumerated in 

Table 9. Note for the echo pattern target, there were no images with a hyperechoic echo pattern in the 

testing set, so this categorization had no true-positives or false-negatives included in the AP calculation.  

  

Table 9: Average precision at intersection over union 0.5 values for 

lesion cancer status and the BI-RADS mass lexicon (shape, 

orientation, margin, echo pattern, posterior features) for both 

bounding box detections and segmentation masks.  

Target Bounding Box  

AP@50 

Segmentation  

AP@50 

Cancer  38.5 39.2 

Shape 13.3 14.2 

Orientation 17.6 18.2 

Margin 7.9 8.4 

Echo Pattern  11.6 12.2 

Posterior Features 11.3 11.8 
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5.2  Breast Density Classification 

The fully convolutional neural 

network approach (CNN) 

outperformed both the logistic 

regression (LogReg) and multi-

layer perceptron (MLP) gray-

level approaches in identifying 

all four breast density categories. 

Table 10 denotes AUROC values and 95% confidence intervals. Performance was compared using 

AUROC values on the held-out test set. Due to our labels being four continuous values, we computed the 

AUROC values on the predicted class only. The four-tuples were condensed into a single value, 

representing the class for which they predicted the largest probability. The difference is the most striking 

for the low breast density (low breast cancer risk) women.  

Table 10: AUROC (95% confidence interval) of the BI-RADS mammographic 

breast density categories for each of the three methods on the held-out test set. 

(LogReg: logistic regression, MLP: gray-level multi-layer perceptron. 95% 

confidence intervals were computed using DeLong’s method.  

 LogReg MLP CNN 

A 0.53 (0.50, 0.57) 0.54 (0.50, 0.57) 0.71 (0.68, 0.74) 

B 0.59 (0.58, 0.59) 0.64 (0.63, 0.64) 0.66 (0.65, 0.67) 

C 0.57 (0.56, 0.57) 0.62 (0.61, 0.63) 0.65 (0.64, 0.65) 

D 0.70 (0.68, 0.72) 0.74 (0.71, 0.76) 0.75 (0.73, 0.77) 
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6  DISCUSSION  

Our results for the breast density classification and breast lesion detection tasks show promising evidence 

that deep learning can be used in tandem with breast ultrasound to provide breast cancer risk analysis and 

diagnosis for women in low-resource areas, such as the USAPI.  

In the lesion detection model, performance on the cancer classification task was much better than 

performance when classifying the other BI-RADS categories. One possible explanation is that cancer 

classification involves all of the BI-RADS mass lexicon into the final decision, as well as signal from the 

surrounding tissue, so the task of cancer classification is likely easier than determination of the BI-RADS 

mass lexicon. A possible area of future work would be implementing cross-talk between the output sub-

networks for the mass characteristics and cancer status, due to the inherent dependency between them; 

i.e., a spiculated lesion is much more likely to be both cancerous and irregular than a lesion with a 

circumscribed margin. Including predictions of the BI-RADS mass lexicon is a form of explainable AI, 

wherein the system is providing related classifications which may help to support or discredit its final 

prediction of lesion cancer status. Another opportunity for future analysis would be the integration of 

more explicitly explainable techniques into the model structure, such as concept bottlenecks [68].  

Our overall objective for the breast lesion detection task is to identify and provide meaningful 

interpretation of cancer status for malignant lesions, to identify breast cancer earlier. We define our 

Figure 9: Bar chart showing the distribution of the pre-defined gray levels for each of the density categories (A:1, B:2, C:3, 

D:4) in the validation set. Good separability is observed in the lower gray-level categories.  
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benchmark for acceptable performance as achieving a similar average precision as the best current lesion 

detection models. The typical performance across the breast lesion detection literature for non-explainable 

methods is 0.7 mean average precision [40, 41, 69-72]. We believe achieving similar performance is 

possible given more training data to tune our model with, especially strongly annotated data.  

In the breast density classification task, the base methods based on predefined gray-levels in the 

scan performed surprisingly well, given the simplicity of the models. Figure 9 shows the distribution of 

gray-levels over the validation dataset. There is good separability in the lower gray-level bins, indicating 

that a method based on these bins may be able to identify scan density classes. More investigation is 

needed into any idiosyncratic differences between scans in each of the scan categories which may be 

contributing to the performance of the gray-level bin-based methods.  

A possible area of future work is to include multiple BUS images for each woman into the 

determination of her breast density, rather than classifying each image separately. Breast density is a 

composite measure, typically derived from a mammogram with four different views of the breast tissue, 

two per breast. Thus, making use of all the scans per woman may provide a more comprehensive view of 

the breast tissue, leading to a more accurate final classification. This could potentially be a significant 

advantage for BUS over traditional mammograms, since BUS can quickly generate many views of the 

breast, and in theory, an intelligent system could help guide the exam administrator to capture better 

images. Our overall objective for the breast density classification task is to derive a measure of 

mammographic breast density from BUS which can be used to provide accurate breast cancer risking. For 

reference, our inter-modality mammographic breast density classification achieves 0.69 mean one vs. rest 

AUROC. Methods for intra-modality classification of mammographic breast density with deep learning 

achieve approximately 0.93 mean one vs. rest AUROC on an internal test set [56].  
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